A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Critical behavior in a chiral molecular model. | LitMetric

Critical behavior in a chiral molecular model.

J Chem Phys

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Published: September 2023

AI Article Synopsis

  • * A four-site molecular model transitions from a supercritical racemic liquid into D-rich and L-rich liquids, with critical temperature and finite-size scaling behaviors aligning with the 3D Ising universality.
  • * The study suggests a mechanism for chirality selection as temperatures drop, with larger systems showing increased free energy barriers that stabilize one enantiomer, pointing to potential explanations for biological homochirality and the influence of chiral external fields.

Article Abstract

Understanding the condensed-phase behavior of chiral molecules is important in biology as well as in a range of technological applications, such as the manufacture of pharmaceuticals. Here, we use molecular dynamics simulations to study a chiral four-site molecular model that exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid into subcritical D-rich and L-rich liquids. We determine the infinite-size critical temperature using the fourth-order Binder cumulant, and we show that the finite-size scaling behavior of the order parameter is compatible with the 3D Ising universality class. We also study the spontaneous D-rich to L-rich transition at a slightly subcritical temperature of T = 0.985Tc, and our findings indicate that the free energy barrier for this transformation increases with system size as N2/3, where N is the number of molecules, consistent with a surface-dominated phenomenon. The critical behavior observed herein suggests a mechanism for chirality selection in which a liquid of chiral molecules spontaneously forms a phase enriched in one of the two enantiomers as the temperature is lowered below the critical point. Furthermore, the increasing free energy barrier with system size indicates that fluctuations between the L-rich and D-rich phases are suppressed as the size of the system increases, trapping it in one of the two enantiomerically enriched phases. Such a process could provide the basis for an alternative explanation for the origin of biological homochirality. We also conjecture the possibility of observing nucleation at subcritical temperatures under the action of a suitable chiral external field.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0161732DOI Listing

Publication Analysis

Top Keywords

critical behavior
8
behavior chiral
8
molecular model
8
chiral molecules
8
d-rich l-rich
8
free energy
8
energy barrier
8
system size
8
chiral
5
critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!