The Aotearoa Genomic Data Repository (AGDR) is an initiative to provide a secure within-nation option for the storage, management and sharing of non-human genomic data generated from biological and environmental samples originating in Aotearoa New Zealand. This resource has been developed to follow the principles of Māori Data Sovereignty, and to enable the right of kaitiakitanga (guardianship), so that iwi, hapū and whānau (tribes, kinship groups and families) can effectively exercise their responsibilities as guardians over biological entities that they regard as taonga (precious or treasured). While the repository is designed to facilitate the sharing of data-making it findable by researchers and interoperable with data held in other genomic repositories-the decision-making process regarding who can access the data is entirely in the hands of those holding kaitiakitanga over each data set. No data are made available to the requesting researcher until the request has been approved, and the conditions for access (which can vary by data set) have been agreed to. Here we describe the development of the AGDR, from both a cultural perspective, and a technical one, and outline the processes that underpin its operation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696480 | PMC |
http://dx.doi.org/10.1111/1755-0998.13866 | DOI Listing |
Int J Biol Markers
January 2025
Department of Respiratory and Critical Care Medicine, Anyue County People's Hospital, Anyue, China.
Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.
Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.
Yi Chuan
January 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of "whole genomic-big data-multi-species" level.
View Article and Find Full Text PDFYi Chuan
January 2025
Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
Over the past decade, the continuous development of ancient genomic technology and research has significantly advanced our understanding of human history. Since 2017, large-scale studies of ancient human genomes in East Asia, particularly in China, have emerged, resulting in a wealth of ancient genomic data from various time periods and locations, which has provided new insights into the genetic history of East Asian populations over tens of thousands of years. Especially since 2022, there emerged a series of new research progresses in the genetic histories of the northern and southern Chinese populations within the past 10,000 years.
View Article and Find Full Text PDFMol Med Rep
March 2025
The First Central Clinical School, Tianjin Medical University, Tianjin 300000, P.R. China.
Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.
View Article and Find Full Text PDFAnim Genet
February 2025
Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Gongzhuling, China.
The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!