Background: Female breast cancer has surpassed lung cancer as the most common cancer, and is also the main cause of cancer death for women worldwide. Breast cancer <1 cm showed excellent survival rate. However, the diagnosis of minimal breast cancer (MBC) is challenging.

Objective: The purpose of our research is to develop and validate an radiomics model based on ultrasound images for early recognition of MBC.

Methods: 302 breast masses with a diameter of <10 mm were retrospectively studied, including 159 benign and 143 malignant breast masses. The radiomics features were extracted from the gray-scale ultrasound image of the largest face of each breast mass. The maximum relevance minimum reduncancy and recursive feature elimination methods were used to screen. Finally, 10 features with the most discriminating value were selected for modeling. The random forest was used to establish the prediction model, and the rad-score of each mass was calculated. In order to evaluate the effectiveness of the model, we calculated and compared the area under the curve (AUC) value, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the model and three groups with different experience in predicting small breast masses, and drew calibration curves and decision curves to test the stability and consistency of the model.

Results: When we selected 10 radiomics features to calculate the rad-score, the prediction efficiency was the best, the AUC values for the training set and testing set were 0.840 and 0.793, which was significantly better than the insufficient experience group (AUC = 0.673), slightly better than the moderate experience group (AUC = 0.768), and was inferior to the experienced group (AUC = 0.877). The calibration curve and decision curve also showed that the radiomics model had satisfied stability and clinical application value.

Conclusion: The radiomics model based on ultrasound image features has a satisfied predictive ability for small breast masses, and is expected to become a potential tool for the diagnosis of MBC, and it is a zero cost (in terms of patient participation and imaging time).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcu.23556DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer
6
radiomics model
4
model based
4
based ultrasound
4
ultrasound image
4
image features
4
features differentiation
4
differentiation minimal
4
breast
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!