General Chemical Reaction Network Theory for Olfactory Sensing Based on G-Protein-Coupled Receptors: Elucidation of Odorant Mixture Effects and Agonist-Synergist Threshold.

J Phys Chem Lett

Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States.

Published: September 2023

AI Article Synopsis

  • This work introduces a comprehensive theory for understanding how chemical reactions in olfactory sensing involve G-protein-coupled receptors (ORs), applicable to various odorant mixtures and ORs.
  • A key aspect of the theory is the "odor activity vector," which measures the strength of signals from ORs relating to background G-protein activity, aiding in the interpretation of olfactory responses.
  • The theory effectively explains interaction effects among odorants, such as inhibition and synergy, and is illustrated through analysis of a mixture with two distinct odorants, highlighting the roles of rate constants and G-protein levels.

Article Abstract

This work presents a general chemical reaction network theory for olfactory sensing processes that employ G-protein-coupled receptors as olfactory receptors (ORs). The theory can be applied to general mixtures of odorants and an arbitrary number of ORs. Reactions of ORs with G-proteins, in both the presence and absence of odorants, are explicitly considered. A unique feature of the theory is the definition of an odor activity vector consisting of strengths of odorant-induced signals from ORs relative to those due to background G-protein activity in the absence of odorants. It is demonstrated that each component of the odor activity defined this way reduces to a Michaelis-Menten form capable of accounting for cooperation or competition effects between different odorants. The main features of the theory are illustrated for a two-odorant mixture. Known and potential mixture effects, such as suppression, shadowing, inhibition, and synergy, are quantitatively described. Effects of relative values of rate constants, basal activity, and G-protein concentration are also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c02310DOI Listing

Publication Analysis

Top Keywords

general chemical
8
chemical reaction
8
reaction network
8
network theory
8
theory olfactory
8
olfactory sensing
8
g-protein-coupled receptors
8
mixture effects
8
absence odorants
8
odor activity
8

Similar Publications

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Multifunctional CuBiS-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

ACS Biomater Sci Eng

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.

View Article and Find Full Text PDF

Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.

View Article and Find Full Text PDF

A Five-Year Analysis of Market Share and Sales Growth for Original Drugs after Patent Expiration in Korea.

Ther Innov Regul Sci

January 2025

School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.

Introduction: The sales patterns of original drugs after patent expiration in Korea show a relatively high market share and continuous sales growth differently from those in the U.S. and European countries.

View Article and Find Full Text PDF

Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior.

J Proteome Res

January 2025

Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801, United States.

Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish () that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!