Lessons learned from the first national population-based genetic carrier-screening program for Duchenne muscular dystrophy.

Genet Med

Genetics Institute, Carmel Medical Center, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel. Electronic address:

Published: December 2023

Purpose: To summarize the results of first year implementation of pan-ethnic screening testing for Duchenne muscular dystrophy (DMD) and present the ensuing challenges.

Methods: Data acquisition for this study was performed by retrospective search of Ministry of Health registry for reports of all laboratories performing genetic screening tests. DMD testing was performed by multiplex ligation-dependent probe amplification technology. In case of single-exon deletion, sequencing of the specific exon was performed to rule out underlying single-nucleotide variant.

Results: Of overall 85,737 DMD tests, 82 clinically significant findings were noted (0.095%, or 1:1,046 women). In addition, 80 findings with uncertain clinical significance were detected (0.093%, or 1:1072), as well as 373 cases (0.4%, or 1:230) of single-exon deletions subsequently identified as false positives because of underlying single-nucleotide variant, mostly variants in exon 8 in North African Jewish population, and in exon 48 in Arab Muslim population.

Conclusion: Interpretation of population-based DMD carrier screening is complex, occasionally requiring additional genetic testing methods and ethical considerations. Multicenter data registry, including ethnic origin and familial segregation in selected cases, is crucial for optimal definition of the results during genetic counseling and informed decisions regarding prenatal testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gim.2023.100981DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
underlying single-nucleotide
8
lessons learned
4
learned national
4
national population-based
4
genetic
4
population-based genetic
4
genetic carrier-screening
4
carrier-screening program
4

Similar Publications

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.

View Article and Find Full Text PDF

Introduction/aims: An increased risk of low trauma fractures is well documented in children and adolescents with duchenne muscular dystrophy (DMD). There is limited evidence regarding the fracture incidence of adults with DMD. The aim of this study was to examine radiologically confirmed fractures in adults with DMD and review bone health monitoring.

View Article and Find Full Text PDF

Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices.

View Article and Find Full Text PDF

Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.

View Article and Find Full Text PDF

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!