Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERβ. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503807PMC
http://dx.doi.org/10.1172/JCI165812DOI Listing

Publication Analysis

Top Keywords

learning memory
24
astrocytic gpr30
16
gpr30 learning
12
female mice
12
effects astrocytic
8
gpr30
8
memory female
8
postmenopausal women
8
memory
7
learning
6

Similar Publications

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

Nat Comput Sci

January 2025

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

An optimized LSTM-based deep learning model for anomaly network intrusion detection.

Sci Rep

January 2025

Department of Electrical and Electronics Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India.

The increasing prevalence of network connections is driving a continuous surge in the requirement for network security and safeguarding against cyberattacks. This has triggered the need to develop and implement intrusion detection systems (IDS), one of the key components of network perimeter aimed at thwarting and alleviating the issues presented by network invaders. Over time, intrusion detection systems have been instrumental in identifying network breaches and deviations.

View Article and Find Full Text PDF

Policy complexity suppresses dopamine responses.

J Neurosci

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford.

Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.

View Article and Find Full Text PDF

Betaamyloid protein regulates miR15a and activates Bag5 to influence neuronal apoptosis in Alzheimers disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: The prevalence of Alzheimer's disease (AD) is increasing globally, however its pathogenesis is still unclear. The evidence showed that the progression of AD was closely related to the apoptosis of nerve cells. This study amis to explore the role and specific mechanism of miR-15a and Bag5 in the apoptosis of nerve cells induced by beta-amyloid protein (Aβ) in AD.

View Article and Find Full Text PDF

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!