Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21). Although several HSA21 genes have been found to be responsible for aspects of DS, whether and how HSA21 genes interact with each other is poorly understood. DS patients and animal models present with a number of neurological changes, including aberrant connectivity and neuronal morphology. Previous studies have indicated that amyloid precursor protein (APP) and Down syndrome cell adhesion molecule (DSCAM) regulate neuronal morphology and contribute to neuronal aberrations in DS. Here, we report the functional interaction between the Drosophila homologs of these two genes, Amyloid precursor protein-like (Appl) and Dscam (Dscam1). We show that Appl requires Dscam to promote axon terminal growth in sensory neurons. Moreover, Appl increases Dscam protein expression post-transcriptionally. We further demonstrate that regulation of Dscam by Appl does not require the Appl intracellular domain or second extracellular domain. This study presents an example of functional interactions between HSA21 genes, providing insights into the pathogenesis of neuronal aberrations in DS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508694PMC
http://dx.doi.org/10.1242/dmm.049725DOI Listing

Publication Analysis

Top Keywords

hsa21 genes
12
axon terminal
8
terminal growth
8
neuronal morphology
8
amyloid precursor
8
neuronal aberrations
8
dscam
6
genes
5
appl
5
drosophila homolog
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!