Changes in serotonin neurotransmission as assayed by microdialysis after acute, intermittent or chronic ethanol administration and withdrawal.

Fundam Clin Pharmacol

Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.

Published: February 2024

Background: The serotonergic neurotransmitter system is involved in many ethanol-induced changes, including many behavioural alterations, as well as contributing to alcohol dependence and its withdrawal.

Aims: This review has evaluated microdialysis studies where alterations in the serotonin system, that is, serotonin, 5-HT, or its metabolite 5-hydroxyindoleacetic acid, 5-HIAA, have been reported during different ethanol intoxication states, as well as in animals showing alcohol preference or not. Changes in 5-HT receptors and the 5-HT transporter are briefly reviewed to comprehend the significance of changes in microdialysate 5-HT concentrations.

Materials And Methods: Changes in 5-HT content following acute, chronic and during ethanol withdrawal states are evaluated. In addition, the serotoninergic system was assessed in animals that have been genetically selected for alcohol preference to ascertain whether changes in this monoamine microdialysate content may contribute to alcohol preference.

Results And Discussion: Changes occurred in 5-HT signalling in the limbic brain regions, increasing after acute ethanol administration in specific brain regions, particularly at higher doses, while chronic alcohol exposure essentially decreased serotonergic transmission. Such changes may play a pivotal role in emotion-driven craving and relapse. Depending on the dosage, mode of administration and consumption rate, ethanol affects specific brain regions in different ways, enhancing or reducing 5-HT microdialysate content, thereby inducing behavioural and cognitive functions and enhancing ethanol consumption.

Conclusion: Microdialysis studies demonstrated that ethanol induces several alterations in 5-HT content as well as its metabolites, 5-HIAA and 5-HTOL, not only in its release from a specific brain region but also in the modifications of its different receptor subtypes and its transporter.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12949DOI Listing

Publication Analysis

Top Keywords

brain regions
12
specific brain
12
changes
8
chronic ethanol
8
ethanol administration
8
microdialysis studies
8
5-ht
8
alcohol preference
8
changes 5-ht
8
5-ht content
8

Similar Publications

The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.

View Article and Find Full Text PDF

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF

Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network.

View Article and Find Full Text PDF

Post-stroke aphasia is a network disorder characterized by language impairments and aberrant network activation. While patients with post-stroke aphasia recover over time, the dynamics of the underlying changes in the brain remain elusive. Neuroimaging work demonstrated that language recovery is a heterogeneous process, characterized by varying activation levels in several regions of the left-hemispheric language network and the domain-general bilateral multiple-demand network.

View Article and Find Full Text PDF

Background Many people with traumatic brain injury (TBI) report problems with social functioning that can have immediate and enduring impacts. We aimed to explore perceptions of social functioning after TBI and understand attitudes towards medication that could improve long-term social outcomes. Method A qualitative descriptive approach using interview methods was conducted in Victoria, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!