Cell-cell interaction is one of the major modalities for transmitting information between cells and activating the effects of functional cells. However, the construction of high-throughput analysis technologies from cell omics focusing on the impact of interactions of functional cells on targets has been relatively unexplored. Here, they propose a droplet-based microfluidic platform for cell-cell interaction sequencing (c-c-seq) and screening in vitro to address this challenge. A class of interacting cells is pre-labeled using cell molecular tags, and additional single-cell sequencing reagents are introduced to quickly form functional droplet mixes. Lastly, gene expression analysis is used to deduce the impact of the interaction, while molecular sequence tracing identifies the type of interaction. Research into the active effect between antigen-presenting cells and T cells, one of the most common cell-to-cell interactions, is crucial for the advancement of cancer therapy, particularly T cell receptor-engineered T cell therapy. As it allows for high throughput, this platform is superior to well plates as a research platform for cell-to-cell interactions. When combined with the next generation of sequencing, the platform may be able to more accurately evaluate interactions between epitopes and receptors and verify their functional relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300730DOI Listing

Publication Analysis

Top Keywords

cell-cell interaction
8
functional cells
8
cell-to-cell interactions
8
cells
6
interactions
5
creation high-throughput
4
high-throughput microfluidic
4
platform
4
microfluidic platform
4
platform single-cell
4

Similar Publications

The clinical relevance of TP53 mutations (TP53) in myeloproliferative neoplasms (MPN) and their prognostic interaction with MPN subtype designation has not been systematically studied. In the current study, 114 patients with MPN harboring TP53 (VAF ≥ 2%) were evaluated for overall survival (OS), calculated from the time of TP53 detection: chronic phase myelofibrosis (MF-CP; N = 61); blast-phase (MPN-BP; N = 31) or accelerated-phase (MPN-AP; N = 16) MPN, and polycythemia vera/essential thrombocythemia (PV/ET; N = 6). Sixty-five (57%) patients harbored International Consensus Classification (ICC)-defined multihit TP53 and 56 (49%) monosomal/complex karyotype (MK/CK).

View Article and Find Full Text PDF

A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.

View Article and Find Full Text PDF

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and the most common form is coronary artery disease (CAD). Treatment options include coronary artery bypass surgery (CABG) or percutaneous heart intervention (PCI), but both have drawbacks. Bare metal stents (BMS) are commonly used to treat CAD; however, they lead to restenosis.

View Article and Find Full Text PDF

Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!