Synaptic homeostatic plasticity is a foundational regulatory mechanism that maintains the stability of synaptic and neural functions within the nervous system. Impairment of homeostatic regulation has been linked to synapse destabilization during the progression of Alzheimer's disease (AD). Recent epigenetic and transcriptomic characterizations of the nervous system have revealed intricate molecular details about the aging brain and the pathogenesis of neurodegenerative diseases. Yet, how abnormal epigenetic and transcriptomic alterations in different cell types in AD affect synaptic homeostatic plasticity remains to be elucidated. Various glial cell types play critical roles in modulating synaptic functions both during the aging process and in the context of AD. Here, we investigated the impact of glial dysregulation of histone acetylation and transcriptome in AD on synaptic homeostatic plasticity, using computational analysis combined with electrophysiological methods in Drosophila. By integrating snRNA-seq and H3K9ac ChIP-seq data from the same AD patient cohort, we pinpointed cell type-specific signature genes that were transcriptionally altered by histone acetylation. We subsequently investigated the role of these glial genes in regulating presynaptic homeostatic potentiation in Drosophila. Remarkably, nine glial-specific genes, which were identified through our computational method as targets of H3K9ac and transcriptional dysregulation, were found to be crucial for the regulation of synaptic homeostatic plasticity in Drosophila. Our genetic evidence connects abnormal glial transcriptomic changes in AD with the impairment of homeostatic plasticity in the nervous system. In summary, our integrative computational and genetic studies highlight specific glial genes as potential key players in the homeostatic imbalance observed in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652298 | PMC |
http://dx.doi.org/10.1111/acel.13989 | DOI Listing |
Trends Immunol
January 2025
Innate Cells and Th2 Immunity Section, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA. Electronic address:
Conventional dendritic cells (cDCs) are sentinels of the mammalian immune system that sense a wide range of danger and homeostatic signals to induce appropriately targeted T cell immune responses. Traditionally classified into two main subsets, cDC1 and cDC2, recent research shows that cDC2s exhibit significant heterogeneity and can be further subdivided. Studies in mice and humans show that, beyond their ontogeny, cDC2s acquire dynamic and tissue-specific characteristics that are influenced by local environmental signals, which impact on their functions during homeostasis, inflammation, and infection.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biology, University of Vermont, Burlington, VT 05405.
Embryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.
View Article and Find Full Text PDFCircuit dysfunction in autism may involve a failure of homeostatic plasticity. To test this, we studied parvalbumin (PV) interneurons which exhibit rapid homeostatic plasticity of intrinsic excitability following whisker deprivation in mouse somatosensory cortex. Brief deprivation reduces PV excitability by increasing Kv1 current to increase PV spike threshold.
View Article and Find Full Text PDFSleep
January 2025
Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!