USP14 is a deubiquitinating enzyme involved in protein degradation by interacting with the proteasome and removal of poly-ubiquitin chains on target proteins. USP14 can influence cellular processes such as cell survival, DNA repair, ER stress, endocytosis, and the inflammatory response. USP14 further plays a role in tumor growth, and the inhibition of USP14 by compounds such as IU1 may affect cancer cell migration and invasion. Here we have studied the mechanisms for the action of IU1 in ML1 follicular thyroid cancer cells, comparing them with control, primary thyroid cells. Treatment with IU1 reduced proliferation of ML1 cells in a concentration-dependent manner, and more prominently than in control cells. IU1 decreased basal migration of ML1 cells, and after stimulation of cells with the bioactive compound, sphingosine-1-phosphate. The sphingosine-1-phosphate receptor 3 was increased in ML1 cells as compared with control thyroid cells, but this was not influenced by IU1. Further studies on the mechanism, revealed that IU1 enhanced the proteasome activity as well as LC3B-dependent autophagy flux in ML1 cells with an opposite effect on control thyroid cells. This indicates that IU1 elicits a cell-type dependent autophagy response, increasing it in ML1 cancer cells. The IU1-mediated stimulation of autophagy and proteasomes can likely contribute to the reduced cell proliferation and migration observed in ML1 cells. The precise set of proteins affected by IU1 in ML1 thyroid and other cancer cells warrant further investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499180PMC
http://dx.doi.org/10.3389/fcell.2023.1234204DOI Listing

Publication Analysis

Top Keywords

ml1 cells
20
cancer cells
16
cells
14
thyroid cancer
12
thyroid cells
12
ml1
9
iu1
9
proliferation migration
8
migration ml1
8
ml1 follicular
8

Similar Publications

Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

The establishment of a feeding regimen for cladocerans is crucial in contemporary aquaculture due to their significance as nutrient-rich live feeds for various aquatic species. Three experiments were conducted to optimize the growth and reproduction rates of cladocerans ( sp. and sp.

View Article and Find Full Text PDF

Quantification and profiling of urine cells by integrated cytocentrifugation and infrared spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain. Electronic address:

The presence of cells in urine and in particular White Blood Cells (WBCs) is often associated with Urinary Tract Infections (UTIs) and other diseases. Non-invasive screening of WBCs requires the development of cost-effective point of care diagnostic tools. Infrared (IR) spectroscopy has the potential to identify and quantify cells in urine.

View Article and Find Full Text PDF

Portable pH meter-based competitive immunoassay of E-selectin using urease-encapsulated metal-organic frameworks.

Talanta

January 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:

E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!