Barnyard millet () has received appreciable attention for its susceptibility to biotic and abiotic stresses, multiple harvests in a year and rich in micronutrients, fibers and phytochemicals. It is believed that the consumption of barnyard millet can possess various health benefits against diabetes, cardiovascular diseases, obesity, skin problems, cancer and celiac disease. The flour of barnyard millet is gluten-free and can be incorporated into the diet of celiac and diabetic patients. Considering the nutritional value of millet, various millet-based food products like bread, snack, baby foods, millet wine, porridge, fast foods and millet nutrition powder can be prepared. Future research and developments on barnyard millet and its products may help cope with various diseases known to humans. This paper discusses barnyard millet's nutritional and health benefits as whole grain and its value-added products. The paper also provides insights into the processing of barnyard millet and its effect on the functional properties and, future uses of barnyard millet in the field food industry as ready-to-cook and ready-to-eat products as well as in industrial uses, acting as a potential future crop contributing to food and nutritional security.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497464PMC
http://dx.doi.org/10.1007/s13197-022-05602-1DOI Listing

Publication Analysis

Top Keywords

barnyard millet
28
millet
10
barnyard
8
health benefits
8
foods millet
8
nutritional
4
nutritional advantages
4
advantages barnyard
4
millet opportunities
4
opportunities processing
4

Similar Publications

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from , an invasive weed species. The dose-dependent effects of shoot and root extracts (SSE, SRE) on the signaling in the forage crop and germination in various weed species (, , , , and ) were evaluated.

View Article and Find Full Text PDF

Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen responsible for bacterial leaf blight (BLB) in rice, which can result in significant yield losses of up to 70%. A study evaluated the spread of Xoo in rice fields using environmental samples and employed colorimetric loop-mediated amplification (cLAMP) and PCR for detection.

View Article and Find Full Text PDF

Successful seed germination and plant seedling growth often require association with endophytic bacteria. Barnyard grass ( (L.) P.

View Article and Find Full Text PDF

Survey of weed species in rice fields using a chloroplast DNA marker and spikelet characteristics identifies accessions with possible paternal inheritance and heteroplasmy.

Physiol Mol Biol Plants

December 2024

Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, Third Cross Street, Taramani Institutional Area, Chennai, 600113 India.

Unlabelled: Hexaploid var. and tetraploid var. are major weeds in rice fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!