A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Native bacterial cellulose films based on kombucha pellicle as a potential active food packaging. | LitMetric

Native bacterial cellulose films based on kombucha pellicle as a potential active food packaging.

J Food Sci Technol

Department of Food Technology, Bogazliyan Vocational School,, Yozgat Bozok University, 66400 Yozgat, Turkey.

Published: November 2023

Unlabelled: The production of kombucha involves the synthesis of a bacterial cellulose-based native film by a microbial consortium, typically regarded as a waste by-product in commercial kombucha manufacturing. In this study, films were successfully obtained using the microbial consortium of kombucha, combined with infusions of black tea, green tea, rosehip, coffee, and licorice. These films exhibited a flexible rubbery-like structure and demonstrated inherent biological activity. Comparative analysis revealed that the licorice-based films exhibited a regular and less porous structure, while the green and black tea-based films displayed a porous structure, resulting in higher water permeability and swelling. Remarkably, green tea-based films showcased notable antioxidant activity (DPPH: %74.22 ± 2.05, ABTS: %81.59 ± 2.39) and exhibited antimicrobial properties against , , and , owing to their high phenolic content (1.62 ± 0.04 μg GAE/g). The antimicrobial efficacy of green tea-based films surpassed that of the other films against pathogenic microorganisms. By enhancing their hydrophobic properties, these innovative films hold promising potential as cost-effective, active, and environmentally friendly materials for food packaging applications.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05808-x.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497472PMC
http://dx.doi.org/10.1007/s13197-023-05808-xDOI Listing

Publication Analysis

Top Keywords

tea-based films
12
films
9
food packaging
8
microbial consortium
8
films exhibited
8
porous structure
8
green tea-based
8
native bacterial
4
bacterial cellulose
4
cellulose films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!