Sepsis is the leading cause of mortality among hospitalized patients in our health care system and has been the target of major international initiatives such as the Surviving Sepsis Campaign championed by the Society of Critical Care Medicine and Get Ahead of Sepsis led by the Centers for Disease Control and Prevention. Our institution has strived to improve outcomes for patients by implementing a novel suite of integrated clinical decision support tools driven by a predictive learning algorithm in the electronic health record. The tools focus on sepsis multidisciplinary care using industry-standard heuristics of interface design to enhance usability and interaction. Our novel clinical decision support tools demonstrated a higher level of interaction with a higher alert-to-action ratio compared to the average of all best practice alerts used at Ochsner Health (16.46% vs 8.4% to 12.1%). By using intuitive design strategies that encouraged users to complete best practice alerts and team-wide visualization of clinical decisions via a checklist, our clinical decision support tools for the detection and management of sepsis represent an improvement over legacy tools, and the results of this pilot may have implications beyond sepsis alerting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498958PMC
http://dx.doi.org/10.31486/toj.22.0098DOI Listing

Publication Analysis

Top Keywords

clinical decision
16
decision support
16
support tools
16
best practice
8
practice alerts
8
sepsis
7
tools
6
clinical
5
alert action
4
action implementing
4

Similar Publications

Background: Clinical reasoning is a professional capability required for clinical practice. In preclinical training, clinical reasoning is often taught implicitly, and feedback is focused on discrete outcomes of decision-making. This makes it challenging to provide meaningful feedback on the often-hidden metacognitive process of reasoning to address specific clinical reasoning difficulties.

View Article and Find Full Text PDF

Development of a prognostic nomogram and risk stratification system for elderly patients with esophageal squamous cell carcinoma undergoing definitive radiotherapy: a multicenter retrospective analysis (3JECROG R-03 A).

BMC Cancer

January 2025

Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian Province, People's Republic of China.

Background: Our goal is to develop a nomogram model to predict overall survival (OS) for elderly esophageal squamous cell carcinoma (ESCC) patients receiving definitive radiotherapy (RT) or concurrent chemoradiotherapy (CRT), aiding clinicians in personalized treatment planning with a risk stratification system.

Methods: A retrospective study was conducted on 718 elderly ESCC patients treated with RT or CRT at 10 medical centers (3JECROG) from January 2004 to November 2016. We identified independent prognostic factors using univariate and multifactorial Cox regression to construct a nomogram model.

View Article and Find Full Text PDF

Objective: Hypertension increases the prevalence of depression to a certain extent and identification and diagnosis of depression frequently pose challenges for clinicians. The study aimed to construct and validate a scoring model predicting the prevalence of depression with hypertension.

Methods: 6124 individuals with hypertension were utilized from the 2007 to 2020 National Health and Nutrition Examination Survey database (NHANES), including 645 subjects that were assessed to have depressive symptoms, 390 in the development group and 255 in the validation group.

View Article and Find Full Text PDF

Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.

Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!