The review considers various aspects of the influence of the glycolytic enzyme, sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) on the energy metabolism of spermatozoa and on the occurrence of several pathologies both in spermatozoa and in other cells. GAPDS is a unique enzyme normally found only in mammalian spermatozoa. GAPDS provides movement of the sperm flagellum through the ATP formation in glycolytic reactions. Oxidation of cysteine residues in GAPDS results in inactivation of the enzyme and decreases sperm motility. In particular, reduced sperm motility in diabetes can be associated with GAPDS oxidation by superoxide anion produced during glycation reactions. Mutations in GAPDS gene lead in the loss of motility, and in some cases, disrupts the formation of the structural elements of the sperm flagellum, in which the enzyme incorporates during spermiogenesis. GAPDS activation can be used to increase the spermatozoa fertility, and inhibitors of this enzyme are being tried as contraceptives. A truncated GAPDS lacking the N-terminal fragment of 72 amino acids that attaches the enzyme to the sperm flagellum was found in melanoma cell lines and then in specimens of melanoma and other tumors. Simultaneous production of the somatic form of GAPDH and sperm-specific GAPDS in cancer cells leads to a reorganization of their energy metabolism, which is accompanied by a change in the efficiency of metastasis of certain forms of cancer. Issues related to the use of GAPDS for the diagnosis of cancer, as well as the possibility of regulating the activity of this enzyme to prevent metastasis, are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499166PMC
http://dx.doi.org/10.3389/fmolb.2023.1256963DOI Listing

Publication Analysis

Top Keywords

sperm flagellum
12
gapds
10
sperm-specific glyceraldehyde-3-phosphate
8
glyceraldehyde-3-phosphate dehydrogenase
8
energy metabolism
8
sperm motility
8
enzyme
7
sperm
5
role sperm-specific
4
dehydrogenase development
4

Similar Publications

Background: The following case report details the genetic evaluation and treatment of a 30-year-old male with a history of asthenoteratospermia and notable abnormalities of the sperm flagella.

Methods: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

Results: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

View Article and Find Full Text PDF

The present study describes the differentiation process of male germ cells in Octopus vulgaris, the morphology of sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction. During spermatogenesis, the male sperm cell gradually elongates from a round shape, with cytoplasm shifting toward the head and the acrosome forming. Additionally, in the spermatid stage, the flagellum develops within the posterior nuclear channel and extends outside the cytoplasm.

View Article and Find Full Text PDF

The widespread use of polyethylene terephthalate (PET) in food and beverage packaging raises concerns about its potential health effects, particularly when PET-derived nanoplastics (PET-NPs) are released into the environment. This study investigates the reproductive toxicity of PET-NPs in male mice. Mice were exposed to PET-NPs at doses of 0.

View Article and Find Full Text PDF

Glycosylation profiling of monkeypox virus structural proteins with poly Ser-Arg materials.

Analyst

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

Although the glycosylation of viral proteins plays a critical role in the process of viral invasion into host cells, studies on the glycosylation of monkeypox virus (MPXV) structural proteins have not yet been reported. To investigate the importance of MPXV protein glycosylation, poly Ser-Arg (poly SR) materials capable of simultaneously enriching both -glycopeptides and -glycopeptides were synthesized by surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The poly SR materials were evaluated using the digest mixture of standard proteins containing bovine fetuin and bovine serum albumin, and the digest of complex biological samples including bovine sperm tail lysate, mouse sperm tail lysate, mouse brain lysate, and human serum.

View Article and Find Full Text PDF

TCTEX1D2 is essential for sperm flagellum formation in mice.

Sci Rep

January 2025

Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.

Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!