A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68. | LitMetric

Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton-sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498176PMC
http://dx.doi.org/10.1016/j.csbj.2023.08.034DOI Listing

Publication Analysis

Top Keywords

gpcrs sense
8
extracellular histidine
8
histidine cluster
8
cluster internal
8
internal carboxylic
8
carboxylic triad
8
structural models
8
atomistic simulations
8
conformational changes
8
cytoplasmic g-protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!