Optical phased array (OPA) beam scanners for light detection and ranging (LiDAR) are proposed by integrating polymer waveguides with superior thermo-optic effect and silicon nitride (SiN) waveguides exhibiting strong modal confinement along with high optical power capacity. A low connection loss of only 0.15 dB between the polymer and SiN waveguides was achieved in this work, enabling a low-loss OPA device. The polymer-SiN monolithic OPA demonstrates not only high optical throughput but also efficient beamforming and stable beam scanning. This novel integrative approach highlights the potential of leveraging heterogeneous photonic materials to develop advanced photonic integrated circuits with superior performance.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.499868DOI Listing

Publication Analysis

Top Keywords

sin waveguides
12
optical phased
8
phased array
8
polymer sin
8
high optical
8
high-performance optical
4
array lidars
4
lidars demonstrated
4
demonstrated monolithic
4
monolithic integration
4

Similar Publications

We propose a strategy to monolithically integrate active III-V lasers and passive dielectric devices, where the passive waveguides are fabricated after the MBE growth of the III-V semiconductors on a planar Si substrate. This avoids any airgap at the active/passive interface, replaced by a thin dielectric interface layer which improves the light coupling efficiency. We demonstrate GaSb DLs butt-coupled to SiN waveguides with ∼23% transmission after 2 mm SiN, corresponding to ∼35% transmission at the active/passive interface.

View Article and Find Full Text PDF

A high-speed infrared tellurium photodetector on a silicon nitride platform.

Nanoscale

December 2024

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.

The hybrid integration of two-dimensional (2D) materials on various photonic integration platforms has attracted widespread research interest because of the new functionalities enabled by the 2D materials for applications in photodetection, optical modulation and nonlinear optical signal processing. Tellurium is known to have high mobility, and quasi-2D tellurium is stable in air and has a small bandgap that may make it suitable for platform-independent scalable integration of high-performance photodetectors in the infrared band. In this work, we propose and implement a new structure for integrating tellurium with silicon nitride (SiN) waveguides, adding photodetector capability to an otherwise passive waveguide platform.

View Article and Find Full Text PDF

Low-confinement silicon nitride (SiN) waveguides offer ultra-low losses but require wide bend radii to avoid radiative losses. To realize the benefits of silicon nitride in a heterogeneous laser while maintaining a small footprint, we employ metal-coated etched facets and transversely coupled Fabry-Perot resonators as mirrors. Heterogeneous quantum dot lasers are fabricated using an on-chip facet plus adiabatic taper coupler, and Fabry-Perot cavities are defined by metal mirrors and post-grating-distributed Bragg reflectors (DBRs).

View Article and Find Full Text PDF

Polarization management, and in particular polarization rotation, is becoming increasingly important for photonic integrated circuits (PICs). While fiber-optic networks are generally polarization insensitive, the large aspect ratio of high-index-contrast PIC waveguides leads to a large polarization-dependent response of integrated components such as waveguides, optical cavities, couplers, etc. Although foundry-processed polarization rotators operating at telecom and datacom wavelengths (C- and O-band) have been demonstrated, to date, there have been few reports of devices operating at shorter wavelengths.

View Article and Find Full Text PDF

Silicon-on-insulator (SOI) technology is widely used in silicon photonic integrated circuits. How to improve the coupling efficiency of the light coupling in free space and optical fibers into waveguides on SOI must be discussed. Grating coupling is a commonly used and highly efficient coupling method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!