In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.496888 | DOI Listing |
ACS Nano
December 2024
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Multiscale mass transport across membranes occurs ubiquitously in biological systems but is difficult to achieve and long-sought-after in abiotic systems. The multiscale transmembrane transport in abiotic systems requires the integration of multiscale transport channels and energy ergodicity, making multiscale mass transport a significant challenge. Herein, emulsion droplets with cell-like confinement are used as the experimental model, and multiscale mass transport is achieved from molecular scale to nanoscale to micron scale, reproducing rudimentary forms of cell-like transport behaviors.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Living organisms take in matter and energy from their surroundings, transforming these inputs into forms that cells can use to sustain metabolism and power various functions. A significant advancement in the development of protocells and life-like materials has been the creation of cell-like microcompartments capable of evolving into higher-order structures characterized by hierarchy and complexity. In this study, a smart emulsion system is designed to digests chemical substrates and generates organic or inorganic products, driving the self-organization and structuration of microcompartments.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
IBM Accelerated Discovery and Cellular Engineering, IBM Almaden Research Center, San Jose, California 95120 United States.
Methane emissions from livestock contribute to global warming. Seaweeds used as food additive offer a promising emission mitigation strategy because seaweeds are enriched in bromoform─a methanogenesis inhibitor. Therefore, understanding bromoform storage and production in seaweeds and particularly in a cell-like environment is crucial.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!