The frequency-dependent divergence angle of terahertz (THz) beams is a crucial aspect in understanding the generation and transmission of broadband THz waves. However, traditional beam profiling methods, such as 1D or 2D translation/rotation scanning detection, are time-consuming and wasteful of THz energy, making them unsuitable for fast measurement applications, such as single-shot THz generation and detection. Here, we proposed a simple solution that involves passing the THz beam through a core-anti-resonant reflective (CARR) cavity (e.g., a paper tube). The spatial information of the beam is then recorded into its frequency spectrum, which can be easily detected by a following traditional THz time-domain spectroscopy (TDS) system or a single-shot sampling setup. Our method enables the acquisition of the angular dispersion without repetitive measurements, and represents a significant step forward in fast and efficient achievement of spatial properties of broadband THz beams.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.493930DOI Listing

Publication Analysis

Top Keywords

angular dispersion
8
frequency spectrum
8
thz beams
8
broadband thz
8
thz
7
recording angular
4
dispersion terahertz
4
beam
4
terahertz beam
4
beam frequency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!