Recently, reconfigurable polarization-manipulation metasurfaces controlled with active components have gained widespread interest due to their adaptability, compact configuration, and low cost. However, due to the inherent non-negligible ohmic loss, the output energy of these tunable metasurfaces is typically diminished, particularly in the microwave region. To surmount the loss problem, herein, we propose an active polarization-converting metasurface with non-reciprocal polarization responses that is integrated with amplifying transistors. In addition, we provide a design strategy for a polarizer that is insensitive to polarization and has energy amplification capabilities. Experiments are conducted in the microwave region, and amplification of the polarization-converting behaviors is observed around 3.95 GHz. The proposed metasurface is prospective for applications in future wireless communication systems, such as spatial isolation, signal enhancement, and electromagnetic environment shaping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.499458 | DOI Listing |
Recently, reconfigurable polarization-manipulation metasurfaces controlled with active components have gained widespread interest due to their adaptability, compact configuration, and low cost. However, due to the inherent non-negligible ohmic loss, the output energy of these tunable metasurfaces is typically diminished, particularly in the microwave region. To surmount the loss problem, herein, we propose an active polarization-converting metasurface with non-reciprocal polarization responses that is integrated with amplifying transistors.
View Article and Find Full Text PDFNanophotonics
April 2023
School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
Reconfigurable metasurfaces have emerged as a promising alternative to the conventional transmitter of wireless communication systems, due to their abilities of encoding digital information onto electromagnetic properties without complex radio-frequency chains. However, most of them are still limited to narrow operation bandwidth. Here, we propose a broadband metasurface-based wireless communication system that can actively adapt to multiple users located at versatile directions through joint modulation of digital signals in the time domain and wave scatterings in the space domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!