Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The emergence of the millimeter wave (mm-Wave; 30 GHz to 300 GHz) frequency band holds a lot of promise for addressing the congestion at low frequency in future mobile networks. Among many mm-Wave generation schemes, optical heterodyning is considered one of the most promising approaches due to its scalability and potential for integration on chip. Employing optical frequency combs (OFC) for optical heterodyning alleviates the significant phase distortions/noise introduced by the optical sources. However, any residual phase noise in these systems can deteriorate the transmission performance. Here we demonstrate a high-capacity mm-Wave radio-over-fiber (RoF) system using Fabry-Pérot (FP) laser comb overcoming the typical limitations of this source. The temporal phase perturbation induced by the frequency fluctuation of the FP laser is theoretically analyzed, and then estimated and compensated by a pilot-based phase equalizer. Performance evaluation of the proposed phase equalizer is conducted through experiment and simulation. Enabled by the proposed compensation scheme, ten 200 MHz filtered orthogonal frequency division multiplexing (f-OFDM) signal bands modulated by 16-quadrature amplitude modulation (QAM) are transmitted over 10 km fiber, with the ability to serve multiple users. The transmission of 16-QAM modulated single carrier signals with 2 GBd and 8 Gbps data rate is also performed for comparison, which offers better resilience to phase noise, demonstrating the first commercial Quantum Well FP laser-based optical heterodyning mm-Wave RoF system for both multi-carrier and single carrier signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.497269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!