In recent years, the manipulation of structured optical beam has become an attractive and promising area. The Gaussian beam is the most common beam as the output beam of the laser, and the Airy beam is recently proposed with fascinating properties and applications. In this paper, for the first time to our knowledge, the polarization is used as a tool to design a new kind of Airy-Gaussian vector beam by connecting the Gaussian and Airy functions, which opens a new avenue in designing new beams based on the existed beams. We realize the Airy-Gaussian vector beam with space-variant polarization distribution in theory and experiment, and find that the vector beam can autofocus twice during propagation. The optical chains with flexible intensity peaks are achieved with the Airy-Gaussian vector beam, which can be applied in trapping and delivering particles including biological cells and Rydberg atoms. Such optical chains can significantly improve the trapping efficiency, reduce the heat accumulation, and sweep away the impurity particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.498492 | DOI Listing |
A scalar, harmonic beam-like field possessing an arbitrary number of orbital angular momentum (OAM) components is shown to trace an ellipse, termed here the orbitalization ellipse, at a given transverse cross section and radius, in the space spanned by the spiral OAM basis. The plane and the structure of the ellipse can be readily found by constructing its conjugate semi-diameter vectors from the OAM components.
View Article and Find Full Text PDFOptical misalignment between transmitter and receiver leads to power loss and mode crosstalk in a mode division multiplexing (MDM) free-space optical (FSO) link. We report both numerical simulations and experimental results on the propagation performance of two typical vector beams, C-point polarization full Poincaré beams (FPB), and V-point polarization cylindrical vector beams (CVB), compared to homogeneous polarization scalar vortex beams (SVB) under optical misalignment. The FSO communication performance under misalignment using different transmit beams is evaluated in terms of power loss, mode crosstalk, power penalty, etc.
View Article and Find Full Text PDFDirac-vortex cavities have single-mode emitting, scalable mode areas, arbitrary mode degeneracies, and vector-beam vertical emission, which attract more and more researchers' attention. Here, we demonstrate the single-mode of two-dimensional transverse magnetic (TM) Dirac-vortex topological cavity modes that are not only generally available for high power topological surface-emitting lasers (TCSEL) but also are one of the excellent candidates for refractive index sensors. The principle for winding number is studied, and the scaling laws are shown with cavity mode diameters.
View Article and Find Full Text PDFFree-space optical (FSO) communication has the advantages of large bandwidth and high security and being license-free, making it the preferred solution for addressing the "last kilometer" of information transmission. However, it is susceptible to fluctuations in the received optical power (ROP) due to atmospheric turbulence and pointing errors, resulting in the inevitable free-space optical communication transmission performance degradation. In this work, we experimentally verified the turbulence resistance of the cylindrical vector beam (CVB) over a 3 km long free-space field trial link.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia.
Introduction: Prostate motion during external beam radiotherapy (EBRT) is common and typically managed using fiducial markers and cone beam CT (CBCT) scans for inter-fractional motion correction. However, real-time intra-fractional motion management is less commonly implemented. This study evaluated the extent of intra-fractional prostate motion using transperineal ultrasound (TPUS) and examined the impact of treatment time on prostate motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!