Ultracold atoms in optical lattices are a flexible and effective platform for quantum precision measurement, and the lifetime of high-band atoms is an essential parameter for the performance of quantum sensors. In this work, we investigate the relationship between the lattice depth and the lifetime of D-band atoms in a triangular optical lattice and show that there is an optimal lattice depth for the maximum lifetime. After loading the Bose-Einstein condensate into D band of optical lattice by shortcut method, we observe the atomic distribution in quasi-momentum space for the different evolution time, and measure the atomic lifetime at D band with different lattice depths. The lifetime is maximized at an optimal lattice depth, where the overlaps between the wave function of D band and other bands (mainly S band) are minimized. Additionally, we discuss the influence of atomic temperature on lifetime. These experimental results are in agreement with our numerical simulations. This work paves the way to improve coherence properties of optical lattices, and contributes to the implications for the development of quantum precision measurement, quantum communication, and quantum computing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.489823 | DOI Listing |
Inorg Chem
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China.
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) toward 2,5-furandicarboxylic acid (FDCA) has been considered a promising approach for the substitution of the energy-consuming and hazardous oxygen evolution reaction and for the valorization of renewable biomass. However, it is limited by the susceptibility of HMF to the oxidative environment and requires efficient electrocatalysts. Herein, a NiMo complex (NiMo-N) is provided as the precatalyst for the HMFOR, exhibiting favorable performances with a current density of 450 mA·cm achieved at an anodic potential of 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China; School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China. Electronic address:
Most transition metal-based electrocatalysts, when used for the oxygen evolution reaction (OER), undergo significant restructuring under alkaline conditions, forming localized oxides/hydroxides (MOOH), which act as the real active centers, activating adjacent metal sites and creating new active sites that enhance electrocatalytic behavior. Nevertheless, inducing rapid and in-depth self-reconstruction of catalyst surfaces remains a huge challenge. Herein, this work achieves rapid and in-depth self-reconstruction by doping fluorine into the lattice of transition metal oxides (MO).
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China.
We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Chinese Academy of Sciences, 19 jia, Yuquan Road, Shijingshan District, Beijing, Beijing, 100049, CHINA.
Previous studies of the transition metal chalcogenide Ta2NiSe5 has identified two phase transitions occurring between 0-10GPa, involving the excitonic insulator-to-semiconductor transition at 1GPa and the semiconductor-to-semimetal transition at 3GPa. However, there is still a lack of in-depth research on the changes in its physical properties changes above 10GPa. In this study, Ta2NiSe5 were investigated under high-pressure conditions using high-pressure X-ray diffraction and high-pressure X-ray absorption experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!