Photonic integrated circuits require photodetectors that operate at room temperature with sensitivity at telecom wavelengths and are suitable for integration with planar complementary-metal-oxide-semiconductor (CMOS) technology. Silicon hyperdoped with deep-level impurities is a promising material for silicon infrared detectors because of its strong room-temperature photoresponse in the short-wavelength infrared region caused by the creation of an impurity band within the silicon band gap. In this work, we present the first experimental demonstration of lateral Te-hyperdoped Si PIN photodetectors operating at room temperature in the optical telecom bands. We provide a detailed description of the fabrication process, working principle, and performance of the photodiodes, including their key figure of merits. Our results are promising for the integration of active and passive photonic elements on a single Si chip, leveraging the advantages of planar CMOS technology.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.494463DOI Listing

Publication Analysis

Top Keywords

room temperature
8
cmos technology
8
on-chip lateral
4
lateral site
4
site pin
4
pin photodiodes
4
photodiodes room-temperature
4
room-temperature detection
4
detection telecom
4
telecom optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!