Homodyne detection is a common self-referenced technique to extract optical quadratures. Due to ubiquitous fluctuations, experiments measuring optical quadratures require homodyne angle control. Current homodyne angle locking techniques only provide high quality error signals in a span significantly smaller than π radians, the span required for full state tomography, leading to inevitable discontinuities during full tomography. Here, we present and demonstrate a locking technique using a universally tunable modulator which produces high quality error signals at an arbitrary homodyne angle. Our work enables continuous full-state tomography and paves the way to backaction evasion protocols based on a time-varying homodyne angle.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.485448DOI Listing

Publication Analysis

Top Keywords

homodyne angle
16
homodyne detection
8
state tomography
8
optical quadratures
8
high quality
8
quality error
8
error signals
8
homodyne
6
continuously tunable
4
tunable modulation
4

Similar Publications

A Two-Dimensional Precision Level for Real-Time Measurement Based on Zoom Fast Fourier Transform.

Micromachines (Basel)

October 2023

Ultra-Precision Optoelectronic Instrument Engineering Center, School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin 150080, China.

This paper proposes a two-dimensional precision level for real-time measurement using a zoom fast Fourier transform (zoom FFT)-based decoupling algorithm that was developed and integrated in an FPGA. This algorithm solves the contradiction between obtaining high resolution and obtaining high measurement speed, and achieves both high angle-resolution measurement and real-time measurement. The proposed level adopts a silicone-oil surface as the angle-sensitive interface and combines the principle of homodyne interference.

View Article and Find Full Text PDF

A vacuum-compatible cylindrical inertial rotation sensor with picoradian sensitivity.

Rev Sci Instrum

September 2023

Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA.

We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14 μm thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers, which achieve a noise level of ∼5prad/Hz. The sensor is entirely made of vacuum compatible materials, and the center of mass can be adjusted remotely.

View Article and Find Full Text PDF

Homodyne detection is a common self-referenced technique to extract optical quadratures. Due to ubiquitous fluctuations, experiments measuring optical quadratures require homodyne angle control. Current homodyne angle locking techniques only provide high quality error signals in a span significantly smaller than π radians, the span required for full state tomography, leading to inevitable discontinuities during full tomography.

View Article and Find Full Text PDF

The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities.

View Article and Find Full Text PDF

We propose an alternative scheme for phase estimation in a Mach-Zehnder interferometer (MZI) with photon recycling. It is demonstrated that with the same coherent-state input and homodyne detection, our proposal possesses a phase sensitivity beyond the traditional MZI. For instance, it can achieve an enhancement factor of ∼9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!