Shot noise is a critical issue in radiographic and tomographic imaging, especially when additional constraints lead to a significant reduction of the signal-to-noise ratio. This paper presents a method for improving the quality of noisy multi-channel imaging datasets, such as data from time or energy-resolved imaging, by exploiting structural similarities between channels. To achieve that, we broaden the application domain of the Noise2Noise self-supervised denoising approach. The method draws pairs of samples from a data distribution with identical signals but uncorrelated noise. It is applicable to multi-channel datasets if adjacent channels provide images with similar enough information but independent noise. We demonstrate the applicability and performance of the method via three case studies, namely spectroscopic X-ray tomography, energy-dispersive neutron tomography, and in vivo X-ray cine-radiography.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.492221DOI Listing

Publication Analysis

Top Keywords

shot noise
8
radiographic tomographic
8
multi-channel imaging
8
noise reduction
4
reduction radiographic
4
tomographic multi-channel
4
imaging
4
imaging self-supervised
4
self-supervised deep
4
deep learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!