Background: Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the methyl-CpG-binding protein 2 gene (MECP2). MeCP2 is a multi-functional protein involved in many cellular processes, but the mechanisms by which its dysfunction causes disease are not fully understood. The duplication of the MECP2 gene causes a distinct disorder called MECP2 duplication syndrome (MDS), highlighting the importance of tightly regulating its dosage for proper cellular function. Additionally, some patients with mutations in genes other than MECP2 exhibit phenotypic similarities with RTT, indicating that these genes may also play a role in similar cellular functions. The purpose of this study was to characterise the molecular alterations in patients with RTT in order to identify potential biomarkers or therapeutic targets for this disorder.

Methods: We used a combination of transcriptomics (RNAseq) and proteomics (TMT mass spectrometry) to characterise the expression patterns in fibroblast cell lines from 22 patients with RTT and detected mutation in MECP2, 15 patients with MDS, 12 patients with RTT-like phenotypes and 13 healthy controls. Transcriptomics and proteomics data were used to identify differentially expressed genes at both RNA and protein levels, which were further inspected via enrichment and upstream regulator analyses and compared to find shared features in patients with RTT.

Results: We identified molecular alterations in cellular functions and pathways that may contribute to the disease phenotype in patients with RTT, such as deregulated cytoskeletal components, vesicular transport elements, ribosomal subunits and mRNA processing machinery. We also compared RTT expression profiles with those of MDS seeking changes in opposite directions that could lead to the identification of MeCP2 direct targets. Some of the deregulated transcripts and proteins were consistently affected in patients with RTT-like phenotypes, revealing potentially relevant molecular processes in patients with overlapping traits and different genetic aetiology.

Conclusions: The integration of data in a multi-omics analysis has helped to interpret the molecular consequences of MECP2 dysfunction, contributing to the characterisation of the molecular landscape in patients with RTT. The comparison with MDS provides knowledge of MeCP2 direct targets, whilst the correlation with RTT-like phenotypes highlights processes potentially contributing to the pathomechanism leading these disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503149PMC
http://dx.doi.org/10.1186/s40246-023-00532-1DOI Listing

Publication Analysis

Top Keywords

patients rtt
16
rtt-like phenotypes
12
patients
10
mecp2
9
rett syndrome
8
cellular functions
8
molecular alterations
8
patients rtt-like
8
mecp2 direct
8
direct targets
8

Similar Publications

Objectives: The purpose of this study was to evaluate whether the iodine contrast in blood and solid organs differs between men and women and to evaluate the effect of BMI, height, weight, and blood volume (BV) on sex-specific contrast in staging CT.

Materials And Methods: Patients receiving a venous-phase thoracoabdominal Photon-Counting Detector CT (PCD-CT) scan with 100- or 120-mL CM between 08/2021 and 01/2022 were retrospectively included in this single-center study. Image analysis was performed by measuring iodine contrast in the liver, portal vein, spleen, left atrium, left ventricle, pulmonary trunk, ascending and descending aorta on spectral PCD-CT datasets.

View Article and Find Full Text PDF

Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations.

View Article and Find Full Text PDF

Analysis of the Belgian RTT workforce and estimation of workforce needs for the near future.

Radiography (Lond)

December 2024

Université Libre de Bruxelles (ULB), Brussels University Hospital, Jules Bordet Institute, Radiotherapy Department, Rue Meylemeersch 90, 1070 Bruxelles, Belgium.

Introduction: Radiation Therapists (RTTs) are crucial in delivering Radiotherapy (RT) to cancer patients. The advancements in RT technology and the increasing cancer incidence have heightened the demand for RTTs, necessitating strategic workforce planning at the national level. This study aims to identify and estimate current and future RTT workforce in Belgium.

View Article and Find Full Text PDF

Neonatal hypothermia is a significant global problem of neonates with huge contribution of neonatal morbidity and mortality. Recognizing major contributors of neonatal hypothermia is very important in designing preventing methods which was the objective of our study. This was an institution-based cross-sectional study conducted on 339 neonates admitted to Neonatal Intensive Care Unit of University of Gondar Comprehensive Specialized Hospital over 6months.

View Article and Find Full Text PDF

Introduction: The clinical, research and advocacy communities for Rett syndrome are striving to achieve clinical trial readiness, including having fit-for-purpose clinical outcome assessments. This study aimed to (1) describe psychometric properties of clinical outcome assessment for Rett syndrome and (2) identify what is needed to ensure that fit-for-purpose clinical outcome assessments are available for clinical trials.

Methods: Clinical outcome assessments for the top 10 priority domains identified in the Voice of the Patient Report for Rett syndrome were compiled and available psychometric data were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!