Rhythm of relationships in a social fish over the course of a full year in the wild.

Mov Ecol

Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany.

Published: September 2023

AI Article Synopsis

  • Fish in temperate regions adjust their social behavior to navigate environmental changes, but research on their wild social networks over long time scales is limited.
  • High-resolution acoustic telemetry was used to study the social interactions of 36 adult common carp in a lake, examining how these interactions change seasonally and daily.
  • Results showed that carp formed stronger social bonds during the day than at night, with increased shoaling behavior in winter and more extended but less frequent interactions in summer.

Article Abstract

Background: Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network.

Methods: To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time.

Results: The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks.

Conclusions: We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502983PMC
http://dx.doi.org/10.1186/s40462-023-00410-4DOI Listing

Publication Analysis

Top Keywords

social
18
social networks
16
full year
12
social interactions
12
social fish
8
course full
8
year wild
8
rhythms social
8
social relationships
8
social attraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!