DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance.

Nat Chem

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.

Published: January 2024

Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-023-01328-5DOI Listing

Publication Analysis

Top Keywords

candidate biomarkers
12
biomarkers low
8
low abundance
8
dnazyme-based faithful
4
faithful probing
4
probing pulldown
4
pulldown identify
4
identify candidate
4
abundance biomarker
4
biomarker discovery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!