AI Article Synopsis

  • GLP1R is an important target for medications used in treating type 2 diabetes and obesity, but its genetic variability affects receptor function and metabolic traits in complex ways.
  • A study analyzed 60 GLP1R variants and found a range of effects, from loss of function to enhanced signaling, revealing that some variants lead to defective insulin secretion, which can be improved using specific ligands or drugs.
  • Research involving 200,000 participants links poor GLP1R expression to worse glucose control and higher body weight, suggesting that impaired GLP1R function is a risk factor for type 2 diabetes and obesity, with new treatment options for affected individuals being explored.

Article Abstract

The glucagon-like peptide 1 receptor (GLP1R) is a major drug target with several agonists being prescribed in individuals with type 2 diabetes and obesity. The impact of genetic variability of GLP1R on receptor function and its association with metabolic traits are unclear with conflicting reports. Here, we show an unexpected diversity of phenotypes ranging from defective cell surface expression to complete or pathway-specific gain of function (GoF) and loss of function (LoF), after performing a functional profiling of 60 GLP1R variants across four signalling pathways. The defective insulin secretion of GLP1R LoF variants is rescued by allosteric GLP1R ligands or high concentrations of exendin-4/semaglutide in INS-1 823/3 cells. Genetic association studies in 200,000 participants from the UK Biobank show that impaired GLP1R cell surface expression contributes to poor glucose control and increased adiposity with increased glycated haemoglobin A1c and body mass index. This study defines impaired GLP1R cell surface expression as a risk factor for traits associated with type 2 diabetes and obesity and provides potential treatment options for GLP1R LoF variant carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610247PMC
http://dx.doi.org/10.1038/s42255-023-00889-6DOI Listing

Publication Analysis

Top Keywords

cell surface
16
surface expression
16
glp1r cell
12
glp1r
9
glp1r variants
8
glucose control
8
control increased
8
increased adiposity
8
type diabetes
8
diabetes obesity
8

Similar Publications

A viscoelastic-plastic deformation model of hemisphere-like tip growth in Arabidopsis zygotes.

Quant Plant Biol

December 2024

Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, Japan.

Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis () zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Progress in understanding the regulatory mechanisms of immune checkpoint proteins PD-1 and PD-L1 expression.

Clin Transl Oncol

January 2025

Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.

Programmed Death Protein-1 (PD-1) is a cell surface receptor that serves as a checkpoint for T cells, playing a pivotal role in regulating T-cell apoptosis. The binding of PD-1 to its ligand, Programmed Death Ligand 1 (PD-L1), inhibits anti-tumor immunity by suppressing T-cell activation signals. Indeed, the PD-1/PD-L1 pathway governs the induction and maintenance of immune tolerance within the tumor microenvironment.

View Article and Find Full Text PDF

Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.

View Article and Find Full Text PDF

Enhancing CO2 Electroreduction to Multicarbon Products by Modulating the Surface Microenvironment of Electrode with Polyethylene Glycol.

Angew Chem Int Ed Engl

January 2025

Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.

Modulating the surface microenvironment of electrodes stands as a pivotal aspect in enhancing the electrocatalytic performance for CO2 electroreduction. Herein, we propose an innovative approach by incorporating a small amount of linear oligomer, polyethylene glycol (PEG), into Cu2O catalysts during the preparation of the CuPEG electrode. The Faradaic efficiency (FE) toward multicarbon products (C2+) increases from 69.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!