AI Article Synopsis

  • Nonalcoholic fatty liver disease (NAFLD) is widespread, partly genetic, and currently lacks effective treatment options.
  • A genome-wide association study (GWAS) identified several genetic variants linked to NAFLD, focusing on genes related to metabolism and liver function.
  • Genetic risk factors can help classify NAFLD into subtypes and significantly increase the risk of severe liver complications, potentially aiding in the development of targeted therapies.

Article Abstract

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918428PMC
http://dx.doi.org/10.1038/s41588-023-01497-6DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
association study
8
nafld-associated variants
8
patatin-like phospholipase
8
phospholipase domain-containing
8
domain-containing protein
8
subtypes nafld
8

Similar Publications

Background: Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in manageing type 2 diabetes mellitus and weight control. Their potential in treating ageing-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed.

View Article and Find Full Text PDF

Background: Antibiotics have recently been suggested to increase the risk of colorectal cancer. Here, we aimed to investigate the association of frequent antibiotic use and genetic susceptibility with the increased risk of the development of colorectal cancer. Therefore, a genome-wide association study was conducted in colorectal cancer patients with frequent antibiotic use and controls to identify potential chromosomal regions that could indicate an increased risk of colorectal cancer associated with antibiotic use.

View Article and Find Full Text PDF

Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!