We analyze propagation of quantum information along chiral Majorana edge states in two-dimensional topological materials. The use of edge states may facilitate the braiding operation, an important ingredient in topological quantum computations. For the edge of the Kitaev honeycomb model in a topological phase, we discuss how the edge states can participate in quantum-information processing, and consider a two-qubit logic gate between distant external qubits coupled to the edge. Here we analyze the influence of disorder and noise on properties of the edge states and quantum-gate fidelity. We find that realistically weak disorder does not prevent one from implementation of a high-fidelity operation via the edge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502100 | PMC |
http://dx.doi.org/10.1038/s41598-023-41997-3 | DOI Listing |
J Am Chem Soc
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou 511436, China.
Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFJ Imaging
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
In grid intelligent inspection systems, automatic registration of infrared and visible light images in power scenes is a crucial research technology. Since there are obvious differences in key attributes between visible and infrared images, direct alignment is often difficult to achieve the expected results. To overcome the high difficulty of aligning infrared and visible light images, an image alignment method is proposed in this paper.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie-Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Speech, Hearing and Phonetic Sciences, Division of Psychology and Language Sciences, University College London, Chandler House 2 Wakefield Street, London WC1N 1PF, UK.
Speech is a highly skilled motor activity that shares a core problem with other motor skills: how to reduce the massive degrees of freedom (DOF) to the extent that the central nervous control and learning of complex motor movements become possible. It is hypothesized in this paper that a key solution to the DOF problem is to eliminate most of the temporal degrees of freedom by synchronizing concurrent movements, and that this is performed in speech through the syllable-a mechanism that synchronizes consonantal, vocalic, and laryngeal gestures. Under this hypothesis, syllable articulation is enabled by three basic mechanisms: target approximation, edge-synchronization, and tactile anchoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!