Polymer nanoparticles have generated significant interest as delivery systems for therapeutic cargo. Self-immolative polymers (SIPs) are an interesting category of materials for delivery applications, as the characteristic property of end-to-end depolymerization allows for the disintegration of the delivery system, facilitating a more effective release of the cargo and clearance from the body after use. In this work, nanoparticles based on a pH-responsive polymer poly(ethylene glycol)--(2-diisopropyl)amino ethyl methacrylate) and a self-immolative polymer poly[,-(diisopropylamino)ethyl glyoxylamide--,-(dibutylamino)ethyl glyoxylamide] (P(DPAEGAm--DBAEGAm)) were developed. Four particles were synthesized based on P(DPAEGAm--DBAEGAm) polymers with varied diisopropylamino to dibutylamino ratios of 4:1, 2:1, 2:3, and 0:1, termed 4:1, 2:1, 2:3, and 0:1 PGAm particles. The pH of particle disassembly was tuned from pH 7.0 to pH 5.0 by adjusting the ratio of diisopropylamino to dibutylamino substituents on the pendant tertiary amine. The P(DPAEGAm--DBAEGAm) polymers were observed to depolymerize (60-80%) below the particle disassembly pH after ∼2 h, compared to <10% at pH 7.4 and maintained reasonable stability at pH 7.4 (20-50% depolymerization) after 1 week. While all particles exhibited the ability to load a peptide cargo, only the 4:1 PGAm particles had higher endosomal escape efficiency (∼4%) compared to the 2:3 or 0:1 PGAm particles (<1%). The 4:1 PGAm particle is a promising candidate for further optimization as an intracellular drug delivery system with rapid and precisely controlled degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649787PMC
http://dx.doi.org/10.1021/acs.biomac.3c00630DOI Listing

Publication Analysis

Top Keywords

self-immolative polymer
8
polymer nanoparticles
8
pdpaegam--dbaegam polymers
8
diisopropylamino dibutylamino
8
particle disassembly
8
nanoparticles precise
4
precise controllable
4
controllable ph-dependent
4
ph-dependent degradation
4
degradation polymer
4

Similar Publications

Facile Preparation of Carbon Nanotube-Based Skin-Like Pressure Sensors.

Small

December 2024

Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.

Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.

View Article and Find Full Text PDF

Self-Immolative Polymers Derived from Renewable Resources via Thiol-Ene Chemistry.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6 A 5B7, Canada.

The development of polymers from renewable resources is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, the design of polymers incorporating both of these features remains a challenge.

View Article and Find Full Text PDF

Over the last few decades, nanotechnology has established to be a promising field in medicine. A remaining dominant challenge in today's pharmacotherapy is the limited selectivity of active pharmaceutical ingredients and associated undesirable side effects. Controlled drug release can be promoted by smart drug delivery systems, which release embedded API primarily depending on specific stimuli.

View Article and Find Full Text PDF

Single-Component High-Resolution Dual-Tone EUV Photoresists Based on Precision Self-Immolative Polymers.

Angew Chem Int Ed Engl

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China.

Electron beam (EB) and extreme ultraviolet (EUV) lithography are advanced techniques capable of achieving sub-10 nm resolutions, critical for fabricating next-generation nanostructures and semiconductor devices. However, developing EUV photoresists that meet all demands for resolution, line edge roughness (LER), and sensitivity (RLS) remains a significant challenge. Herein, we introduce high-performance photoresists based on single-component self-immolative polymers (SIPs) with inherent signal amplification via cascade degradation.

View Article and Find Full Text PDF

Efficient Encapsulation of β-Lapachone into Self-Immolative Polymer Nanoparticles for Cyclic Amplification of Intracellular Reactive Oxygen Species Stress.

ACS Nano

September 2024

Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China.

The selective upregulation of intracellular oxidative stress in cancer cells presents a promising approach for effective cancer treatment. In this study, we report the integration of enzyme catalytic amplification and chemical amplification reactions in β-lapachone (Lap)-loaded micellar nanoparticles (NPs), which are self-assembled from reactive oxygen species (ROS)-responsive self-immolative polymers (SIPs). This integration enables cyclic amplification of intracellular oxidative stress in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!