Host cell environments and antibiotic efficacy in tuberculosis.

Trends Microbiol

Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. Electronic address:

Published: March 2024

The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2023.08.009DOI Listing

Publication Analysis

Top Keywords

subcellular compartments
8
drug development
8
host cell
4
cell environments
4
environments antibiotic
4
antibiotic efficacy
4
efficacy tuberculosis
4
tuberculosis aetiologic
4
aetiologic agent
4
agent tuberculosis
4

Similar Publications

Adenosine triphosphate (ATP), the primary energy currency in cells, is dynamically regulated across different subcellular compartments. The ATP interplay between mitochondria and endoplasmic reticulum (ER) underscores their coordinated roles in various biochemical processes, highlighting the necessity for precise profiling of subcellular ATP dynamics. Here we present an exogenously and endogenously dual-regulated DNA nanodevice for spatiotemporally selective, subcellular-compartment specific signal amplification in ATP sensing.

View Article and Find Full Text PDF

SLC10A7 regulates O-GalNAc glycosylation and Ca homeostasis in the secretory pathway: insights into SLC10A7-CDG.

Cell Mol Life Sci

January 2025

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.

Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.

View Article and Find Full Text PDF

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments.

View Article and Find Full Text PDF

Assembly of Structurally Simple Icosahedral Viruses.

Subcell Biochem

December 2024

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!