Background: Cell characterization and manipulation play an important role in biological and medical applications. Cell viability evaluation is of significant importance for cell toxicology assay, dose test of anticancer drugs, and other biochemical stimulations. The electrical properties of cells change when cells transform from healthy to a pathological state. Current methods for evaluating cell viability usually requires a complicated chip and the throughput is limited.
Results: In this paper, a bipolar electrode (BPE) array based microfluidic device for assessing cell viability is exploited using AC electrodynamics. The viability of various cells including yeast cells and K562 cells, can be evaluated by analyzing the electro-rotation (ROT) speed and direction of cells, as well as the dielectrophoresis (DEP) responses of cells. Firstly, the cell viability can be identified by the position of the cell captured on the BPE electrode in terms of DEP force. Besides, cell viability can also be evaluated based on both the cell rotation speed and direction using ROT. Under the action of travelling wave dielectric electrophoresis force, the cell viability can also be distinguished by the rotational motion of cells on bipolar electrode edges.
Significance: This study demonstrates the utility of BPEs to enable scalable and high-throughput AC electrodynamics platforms by imparting a flexibility in chip design that is unparalleled by using traditional electrodes. By using BPEs, our proposed new technique owns wide application for cell characterization and viability assessment in situ detection and analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341701 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!