Herein, hydrophobic coating materials are reported for QCM detection of VOCs under dry and humid conditions. In this study, IR780-based GUMBOS ([IR780][OTf] and [IR780][NTf2]) were synthesized using an ion exchange reaction and the anions trifluoromethanesulfonimide ([OTf]) and bisperfluoromethanesulfonimide ([NTf2]). The parent iodide salts and GUMBOS ([IR780][I]), [IR780][OTf], and [IR780][NTf2]) were characterized using several analytical techniques. These salts were then employed as sensor coatings on quartz crystal resonators using an electrospray coating method. These sensors were exposed to four flow ratios of five common VOCs in the absence and presence of 10 vol% water. Fundamental frequency responses were recorded and further employed as input variables to develop highly accurate multi-sensor arrays (MSAs). Accuracy was better than 78.3% without water, and better than 91.7% in the presence of water. When multi-harmonic responses were evaluated as input variables to assess discrimination ability for each sensor, highly accurate virtual sensor arrays (VSAs) were developed using each GUMBOS coating. In the case of [IR780][NTf2], a slight improvement in discrimination was achieved in the presence of water (95%) versus the absence of water. Moreover, this study highlights development of readily synthesized hydrophobic coatings of IR780-based GUMBOS for potential detection and discrimination of VOCs in aqueous systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341677DOI Listing

Publication Analysis

Top Keywords

ir780-based gumbos
12
sensor arrays
8
[ir780][otf] [ir780][ntf2]
8
input variables
8
highly accurate
8
presence water
8
gumbos
5
water
5
influence humidity
4
humidity accuracy
4

Similar Publications

Herein, hydrophobic coating materials are reported for QCM detection of VOCs under dry and humid conditions. In this study, IR780-based GUMBOS ([IR780][OTf] and [IR780][NTf2]) were synthesized using an ion exchange reaction and the anions trifluoromethanesulfonimide ([OTf]) and bisperfluoromethanesulfonimide ([NTf2]). The parent iodide salts and GUMBOS ([IR780][I]), [IR780][OTf], and [IR780][NTf2]) were characterized using several analytical techniques.

View Article and Find Full Text PDF

Herein, a simple counter-ion variation strategy is proposed and demonstrated for design of an array of near infrared IR780-based nanoGUMBOS (nanomaterials from a Group of Uniform Materials Based on Organic Salts) to produce enhanced anticancer activity. These nanomaterials were synthesized by direct nanoengineering of IR780-based GUMBOS using a reprecipitation method, without addition of any other materials. Thus, these novel nanomaterials can serve as carrier-free nanodrugs, providing several distinct advantages over conventional chemotherapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!