Background: Pseudomonas aeruginosa is a Gram-negative bacillus that causes superficial and deep infections, which can be minor to life-threatening. Recently, P. aeruginosa has gained significant relevance due to the increased incidence of multidrug-resistant (MDR) strains that complicate antibiotic treatment. Due to MDR strains, alternative therapies, such as antimicrobial photodynamic therapy (PDT), are presented as a good option to treat nonsystemic infections. PDT combines a photosensitizer agent (PS), light, and oxygen to generate free radicals that destroy bacterial structures such as the envelope, matrix, and genetic material. This work aimed to identify the development stage of the PDT applied to P. aeruginosa to conclude which research stage should be emphasized more.
Methods: Systematic bibliographic search in various public databases was performed. Related articles were identified using keywords, and relevant ones were selected using inclusion and exclusion criteria according to the PRISMA protocol.
Results: We found 29 articles that meet the criteria, constituting a good body of evidence associated with using PDT against P. aeruginosa in vitro and less developed for in vivo research.
Conclusions: We conclude that PDT could become an effective adjunct to antimicrobial therapy against P. aeruginosa. This effectiveness depends on the PS used and the location of the infection. Many PS already demonstrated efficacy in PDT, but the evidence is supported significantly by in vitro and very few in vivo studies. Therefore, we conclude that further research efforts should focus on demonstrating the safety and efficacy of these PSs in vivo in animal infection models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2023.103803 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!