The number of end-of-life waste tyres has increased enormously worldwide, which is one of the non-biodegradable Municipal Solid Waste (MSW) piling up in an open space for a long time. Every year, various types of tyres are released in the environment from different vehicles, such as trucks, buses, cars, motorcycles, and bicycles, which negatively impact the environment. Nowadays, waste tyres are treated in several ways, whereas thermochemical conversion is one of them, including combustion, gasification, incineration, and pyrolysis. Many literatures revealed that pyrolysis is a more environmentally friendly process than others since it can convert waste tyres into crude oil, char, and syngas without emitting harmful gases. In this study, the pyrolysis of tyres and the chemical activation of tyres are reviewed in terms of their kinetic behaviour. According to the literature, the most influential factors of the pyrolysis process are reactors, temperature, heating rate, residence time, feedstock size and catalyst. As the main ingredient of the tyre is rubber, tyre pyrolysis starts from 300 °C and completely decomposed nearly 550 °C. It can be found from literature that Pyrolysed tyre can produce 30-65% oil, 25-45% char and 5-20 % gas. It is also explained how the properties of active carbon (AC) are affected by activating conditions, including activation temperature, agent, the ratio of reagent mixture and others. Generally, pyrolytic char has surface area between 20 and 80 m/g, whereas tyre-derived activated carbon's (TDAC) surface area varied from 90 to 970 m/g. For large surface area and porous structure, TDAC has large application in purification and energy storage sector. The individuality of this article is to depict the entire pathway of AC production from waste tyres. The findings of this literature review help to improve technologies for producing activated carbon from waste tyres pyrolysed char.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166981 | DOI Listing |
Acta Trop
December 2024
Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable, Facultad de Ciencias Exactas, UNCPBA-CICPBA, (7000) Tandil, Provincia de Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. Electronic address:
Estimating the abundance of immature mosquitoes in discarded water-filled tyres is a laborious task due to their shape and size. Our objective was to develop a procedure that allows, by counting individuals in a water sample, to estimate their total abundance. Polynomial functions linking water column height and water volume were fitted for five tyre categories (from cars to tractors) and horizontal/vertical storage positions.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China.
High-Content Crumb Rubber Asphalt (HCRA) binder improves road performance and address waste tyre pollution, yet its ageing behaviour is not fully understood. In this study, 70# neat asphalt binder and HCRA with rubber contents of 35% and 50% were selected and aged through the Thin Film Oven Test (TFOT) and Pressure Ageing Vessel (PAV) tests. FTIR (Fourier Transform Infrared Spectroscopy) and DSR (Dynamic Shear Rheometer) were employed to investigate their chemical composition and rheological properties.
View Article and Find Full Text PDFNanoscale Adv
September 2024
Department of Mechanical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology Kumasi Ghana
Carbon black, a nano-porous material usually derived from the pyrolysis of waste tyres possesses varied particle sizes and morphology making it a viable material for several engineering applications. However, the high tendency for CB to agglomerate remains a challenge. To address this, bio-templating has been employed to produce a nanostructured porous carbon electrode material for supercapacitor applications using diatomite as a template.
View Article and Find Full Text PDFPyrolysis of waste furniture wood, mixed plastics and waste tyres was examined separately and in different combinations from the perspective of improved value products and energy production. The effect of different combinations of furniture wood, plastics and tyres on the product distribution during co-pyrolysis was analyzed. The experimental work throughout this study was performed at a temperature of 500 °C.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
Driving a car at extreme speeds, road holding, and sustainability do not go together well. Formula 1 racing is exciting but is not an example of sustainability. The aim of this work was to use materials, suitable for the treads of high-performance racing tyres, that can favour both high performance and sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!