Alzheimer's disease (AD) is a neurodegenerative disease marked by mitochondrial dysfunction, amyloid-β (Aβ) aggregation, and neuronal cell loss. G-protein-coupled receptor 55 (GPR55) has been used as a promising target for insulin receptors in diabetes therapy, but GPR55's role in AD is still unidentified. Gelatin (GE) and polyethylene glycol (PEG) polymeric hydrogels are commonly used in the drug delivery system. Therefore, the aim of the present study was the preparation of magnesium hydroxide nanocomposite using Clitoria ternatea (CT) flower extract, GE, and PEG (GE/PEG/Mg(OH)NCs) by the green precipitation method. The synthesized GE/PEG/Mg(OH)NCs were used to determine the effect of GPR55 activation of intracerebroventricular administration on streptozotocin (ICV-STC)-induced cholinergic dysfunction, oxidative stress, neuroinflammation, and cognitive deficits. The GE/PEG/Mg(OH)NCs were administered following bilateral ICV-STC administration (3 mg/kg) in experimental rats. Neurobehavioral assessments were performed using a Morris water maze (MWM) and a passive avoidance test (PA). Cholinergic and antioxidant activity, oxidative stress, and mitochondrial complex activity were estimated in the cortex and hippocampus through biochemical analysis. Inflammatory markers (TNF-α, IL-6, and IL-1β) were determined using the ELISA method. Our study results demonstrated that the GE/PEG/Mg(OH)NCs treatment significantly improved spatial and non-spatial memory functions in behavioral studies. Moreover, the treatment with GE/PEG/Mg(OH)NCs group significantly attenuated cholinergic dysfunction, oxidative stress, and inflammatory markers, and also highly improved anti-oxidant activity (GSH, SOD, CAT, and GPx) in the cortex and hippocampus regions. The western blot results suggest the activation of the GPR55 protein expression through GE/PEG/Mg(OH)NCs. The histopathological studies showed clear cytoplasm and healthy neurons, effectively promoting neuronal activity. Furthermore, the molecular docking results demonstrated the binding affinity and potential interactions of the compounds with the AChE enzyme. In conclusion, the GE/PEG/Mg(OH)NCs treated groups showed reduced neurotoxicity and have the potential as a therapeutic agent to effectively target AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2023.102337DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
magnesium hydroxide
8
hydroxide nanocomposite
8
activation gpr55
8
gpr55 protein
8
alzheimer's disease
8
cholinergic dysfunction
8
dysfunction oxidative
8
cortex hippocampus
8
inflammatory markers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!