Our previous work showed that the size, elasticity and charge of multi-lamellar liposomes (MLLs) could not be considered separately to predict the fate of MLLs in the skin [1]. Based on this study, we developed several MLLs formulations containing a corticosteroid, betamethasone 17-valerate (B17) to transport the drug into the stratum corneum, living epidermis, dermis or through the skin. MLLs encapsulation efficiency was found to exceed 74 ± 3 % in all cases. In addition, we showed that MLLs protected the corticosteroid from thermal degradation. Comparing the penetration depth of all MLLs within artificial skin measured by Raman imaging, we established an equation for its determination, given the MLLs elasticity and size. This equation was verified experimentally on human explants: quantification of B17 in each skin layer, as well as its transdermal passage by ultra-high performance liquid chromatography, confirmed that B17 was predominantly and significantly transported in the desired layer. Eventually, we showed the benefits in using B17-loaded MLLs instead of a B17-containing pharmaceutical cream in terms of B17 penetration and thermal degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2023.09.007 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin.
View Article and Find Full Text PDFPharmaceutics
December 2024
Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China.
: Traditional paclitaxel therapy often results in significant side effects due to its non-specific targeting of cancer cells. Peptide aptamer-paclitaxel conjugates present a promising alternative by covalently attaching paclitaxel to a versatile peptide aptamer via a linker. Compared to antibody-paclitaxel conjugates, peptide aptamer-paclitaxel conjugates offer several advantages, including a smaller size, lower immunogenicity, improved tissue penetration, and easier engineering.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: To study the durability of the anti-demineralization effects of fluoride varnish after being applied to dental root surfaces.
Methods: Coronal and radicular dentin samples were prepared from extracted human teeth. Duraphat (DP) was applied to the dentine surfaces to form a protective film.
Biochim Biophys Acta Biomembr
January 2025
Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
The present study investigates the molecular mechanisms of polyphenol-lipid interactions and their impact on membrane properties. Using pyrene and DPH as reporter molecules, we examined the impact of quercetin, curcumin, gallic, and salicylic acids on membranes composed of phosphatidylcholine (PC) and its mixtures with phosphatidylglycerol (PG), cardiolipin (CL), and cholesterol (Chol). Quercetin was found to increase the lipid order without affecting the lipid bilayer free volume, indicating interactions near the membrane surface.
View Article and Find Full Text PDFVet Sci
January 2025
Independent Researchers, UK.
Penetrating captive bolt (PCB) is widely used for stunning and on-farm dispatch of livestock, yet its efficacy can vary, with the potential for animal welfare compromise. This study investigated the pathophysiology of PCB-induced trauma in horned and polled sheep (), focusing on factors contributing to incomplete concussion. Thirty-seven ( = 18 horned Scottish blackface and = 19 polled North Country mule) mature ewes (aged 4-10 years) were shot with PCB with varying cartridge power and PCB modifications, followed by clinical assessment and post-mortem analysis using magnetic resonance imagining (MRI) and gross pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!