Bacterial natural products remain a major untapped source for novel antimicrobial scaffolds. Many of these products are encoded by biosynthetic gene clusters (BGCs), which can be identified using functional genomics. We developed a replica-plating approach to quickly screen for antibiotic production mutants from transposon mutant libraries and identify candidate antibiotic BGCs. In this technique, filter paper is used to transfer up to 200 mutants simultaneously onto a soft agar overlay or spread plate containing a target microbe to identify antibiotic-production mutants. These mutants can then be analyzed to identify disrupted genes and antibiotic BGCs. We first tested and optimized this technique by screening for previously characterized BGCs in Pantoea. We then applied the technique to uncover the gene cluster responsible for the production of an unknown broad-spectrum antibiotic from P. agglomerans 20KB447973, which we call Pantoea Natural Product 5 (PNP-5). Analysis of the predicted gene cluster for PNP-5 showed similarity to previously identified gene clusters for the broad-spectrum dithiolopyrrolone antibiotic, holomycin. Analysis of the spectrum of activity of PNP-5 showed activity against members of the Enterobacteriaceae, Erwiniaceae, and Streptococcaceae, including clinically relevant pathogens such as Klebsiella sp. and Escherichia coli. We also identified the production of a second antibiotic, pantocin A. Our findings demonstrate the utility of our replica-plating mutant transfer method in exploring unknown antibiotic BGCs. Adoption of this technique may accelerate the identification of potentially novel antimicrobial BGCs within strain collections, advancing the search for novel antimicrobials that can be used to treat multi-drug resistant infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2023.106822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!