Transmission electron microscopy (TEM) has emerged as a valuable tool for assessing and mapping strain fields within materials. By directly analyzing local atomic spacing variations, TEM enables the precise measurement of local strain with high spatial resolution. However, it is standard practice to use thin specimens in TEM analysis to ensure electron transparency and minimize issues such as projection artifacts and contributions from multiple scattering. This raises an important question regarding the extent of structural modification, such as strain relaxation, induced in thin samples due to the increased surface-to-volume ratio and the thinning process. In this study, we conducted a systematic investigation to quantify the influence of TEM sample thickness on the residual strain field using deformed Fe-based and Zr-based metallic glasses as model systems. The samples were gradually thinned from 300 nm to 70 nm, and the same area was examined using 4D-STEM with identical imaging settings. Our results demonstrate that thinning the sample affects the atomic configuration at both the short-range (SR) and medium-range (MR) scales. Consequently, when the sample is thinned too much, it no longer preserves the native deformation structure. These findings highlight the critical importance of maintaining sufficient TEM sample thickness for obtaining meaningful and accurate strain measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2023.113844 | DOI Listing |
Oncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFACS Omega
January 2025
Nanotechnology, IoT and Applied Machine Learning Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh.
Nanoparticles embedded in polymer matrices play a critical role in enhancing the properties and functionalities of composite materials. Detecting and quantifying nanoparticles from optical images (fixed samples-in vitro imaging) is crucial for understanding their distribution, aggregation, and interactions, which can lead to advancements in nanotechnology, materials science, and biomedical research. In this article, we propose an ensembled deep learning approach for automatic nanoparticle detection and oligomerization quantification in a polymer matrix for optical images.
View Article and Find Full Text PDFACS Omega
January 2025
Bioinformatics Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India.
Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.
View Article and Find Full Text PDFBMC Chem
January 2025
Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!