The coastal streams (CSs) and sewage outfalls (SOs) are widely distributed and direct anthropogenic stress on global coastal ecosystems. However, the CS/SO-associated mercury (Hg) discharge, pollution and cycle in nearshore environment are less quantified. Here, we report that total Hg (THg) and methylmercury (MMHg) concentrations in waters of CSs (n = 8) and SOs (n = 15) of the northern China were ∼10 to 10 times of coastal surface waters and 10 to 10 times of major rivers in China and other regions. The CS/SO discharges resulted in the increase of total organic carbon (TOC) contents, THg and MMHg concentrations and TOC-normalized THg and MMHg concentrations in sediments of CS/SO-impacted coasts. The laboratory experiments further illustrated that the CS/SO-impacted sediments characterized with high potentials of dissolved THg and MMHg productions and releases. Our findings indicate that the layout optimization of SOs is able to reduce the Hg risk in coastal environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!