We simulate X-ray absorption spectra at elemental K-edges using time-dependent density functional theory (TDDFT) in both its conventional linear-response implementation and its explicitly time-dependent or "real-time" formulation. Real-time TDDFT simulations enable broadband spectra calculations without the need to invoke frozen occupied orbitals ("core/valence separation"), but we find that these spectra are often contaminated by transitions to the continuum that originate from lower-energy core and semicore orbitals. This problem becomes acute in triple-ζ basis sets, although it is sometimes sidestepped in double-ζ basis sets. Transitions to the continuum acquire surprisingly large dipole oscillator strengths, leading to spectra that are difficult to interpret. Meaningful spectra can be recovered by means of a filtering technique that decomposes the spectrum into contributions from individual occupied orbitals, and the same procedure can be used to separate L- and K-edge spectra arising from different elements within a given molecule. In contrast, conventional linear-response TDDFT requires core/valence separation but is free of these artifacts. It is also significantly more efficient than the real-time approach, even when hundreds of individual states are needed to reproduce near-edge absorption features and even when Padé approximants are used to reduce the real-time simulations to just 2-4 fs of time propagation. Despite the cost, the real-time approach may be useful to examine the validity of the core/valence separation approximation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00673 | DOI Listing |
Am J Cancer Res
December 2024
School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.
Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.
View Article and Find Full Text PDFDebilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Centre for Mobile Innovation (CMI), Sheridan College, Oakville, Ontario, Canada.
In this paper, we introduce -a Mixed Reality (MR) system designed for healthcare professionals to monitor patients in wards or clinics. We detail the design, development, and evaluation of , which integrates real-time vital signs from a biosensor-equipped wearable, . The system generates holographic visualizations, allowing healthcare professionals to interact with medical charts and information panels holographically.
View Article and Find Full Text PDFBio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFRapid detection of pork quality has garnered increasing attention due to its status as one of the most widely consumed meats in the world. This study developed an electrochemical impedance combined with sensory evaluation method to achieve real-time imaging and quality assessment of pork. The optimal parameters for pork detection were determined through system performance tests and a Design of Experiment, which included the use of an adjacent excitation pattern, an excitation current of 15 mA at 10 kHz, a detector diameter of 5 cm, and stainless-steel electrodes embedded in the pork.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!