AI Article Synopsis

  • The Gaussian-modulated coherent state (GMCS) is an effective quantum key distribution method that manages background noise and ambient light well, but it's challenging to apply in free space with current polarization techniques.
  • A new polarization coding system utilizing a self-compensating fiber Sagnac interferometer has been proposed, allowing for significantly lower voltage requirements and rapid polarization changes.
  • This innovative setup, made from readily available fiber components, is compact and practical for mobile devices, potentially paving the way for practical applications in various technologies.

Article Abstract

The Gaussian-modulated coherent state (GMCS) is a well-known continuous-variable quantum key distribution (CV-QKD) protocol that is robust to incoherent background noise and can effectively suppress ambient light in free space. However, it is difficult to implement this protocol in free space using existing polarization coding schemes. In this Letter, we propose a polarization coding structure based on a self-compensating fiber Sagnac interferometer, which can reduce the required modulation voltage by two orders of magnitude and achieve fast and arbitrary polarization modulation, and experimentally demonstrate polarization coding-based GMCS CV-QKD for, it is believed, the first time. The proposed polarization modulation structure, which uses off-the-shelf fiber components, is compact, simple, and suitable for mobile terminals, such as flying lifts.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.502897DOI Listing

Publication Analysis

Top Keywords

continuous-variable quantum
8
quantum key
8
key distribution
8
fiber sagnac
8
sagnac interferometer
8
free space
8
polarization coding
8
polarization modulation
8
polarization
5
experimental realization
4

Similar Publications

More trust in networks, more secure keys.

Light Sci Appl

January 2025

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.

A novel continuous-variable quantum passive optical network is proposed in which a user can increase their key rate by trusting other users. This is because the keys, which would be discarded to remove correlations with untrusted users, can be retained when the users are trusted. It provides a new perspective for enhancing network performance.

View Article and Find Full Text PDF

Quantum Simulation of Partial Differential Equations via Schrödingerization.

Phys Rev Lett

December 2024

Institute of Natural Sciences, School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

We present a novel new way-called Schrödingerization-to simulate general (quantum and nonquantum) systems of linear ordinary and partial differential equations (PDEs) via quantum simulation. We introduce a new transform, referred to as the warped phase transformation, where any linear-including nonautonamous-system of ordinary or partial differential equation can be recast into a system of Schrödinger's equations, in real time, in a straightforward way. This approach is not only applicable to PDEs for classical problems but is also useful for quantum problems, including the preparation of quantum ground states and Gibbs thermal states, the simulation of quantum states in random media in the semiclassical limit, simulation of Schrödinger's equation in a bounded domain with artificial boundary conditions, and other non-Hermitian physics.

View Article and Find Full Text PDF

Entanglement-Enabled Advantage for Learning a Bosonic Random Displacement Channel.

Phys Rev Lett

December 2024

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.

We show that quantum entanglement can provide an exponential advantage in learning properties of a bosonic continuous-variable (CV) system. The task we consider is estimating a probabilistic mixture of displacement operators acting on n bosonic modes, called a random displacement channel. We prove that if the n modes are not entangled with an ancillary quantum memory, then the channel must be sampled a number of times exponential in n in order to estimate its characteristic function to reasonable precision; this lower bound on sample complexity applies even if the channel inputs and measurements performed on channel outputs are chosen adaptively or have unrestricted energy.

View Article and Find Full Text PDF

Background: Obesity is associated with excessive adipocyte-derived aldosterone secretion, independent of the classical renin-angiotensin-aldosterone cascade, and mineralocorticoid receptor antagonists may be more effective in patients with heart failure (HF) and obesity.

Objectives: This study sought to examine the effects of the nonsteroidal mineralocorticoid receptor antagonist finerenone compared with placebo, according to body mass index (BMI) in FINEARTS-HF (FINerenone trial to investigate Efficacy and sAfety superioR to placebo in paTientS with Heart Failure).

Methods: A total of 6,001 patients with HF with NYHA functional class II, III, and IV, a left ventricular ejection fraction of ≥40%, evidence of structural heart disease, and elevated natriuretic peptide levels were randomized to finerenone or placebo.

View Article and Find Full Text PDF

In quantum communication protocols, the use of photon-number-resolving detectors could open new perspectives by broadening the way to encode and decode information and merging the properties of discrete and continuous variables. In this work, we consider a quantum channel exploiting a silicon-photomultiplier-based receiver and evaluate its performance for quantum communication protocols under three possible configurations, defined by different post-processing of the detection outcomes. We investigate two scenarios: information transmission over the channel, quantified by the mutual information, and continuous-variable quantum key distribution, quantified by the key generation rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!