In our experiments, we reveal a so-far unnoticed power limitation of beam self-cleaning in graded-index nonlinear multimode optical fibers. As the optical pulse power is progressively increased, we observed that the initial Kerr-induced improvement of the spatial beam quality is eventually lost. Based on a holographic mode decomposition of the output field, we show that beam spoiling is associated with high-temperature wave thermalization, which depletes the fundamental mode in favor of a highly multimode power distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.497917 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.
Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.
View Article and Find Full Text PDFJ Invest Dermatol
December 2024
Department of Dermatology, China-Japan Friendship Hospital, Beijing, China. Electronic address:
With the widespread prevalence of COVID-19, researches have suggested a potential link between androgens and COVID-19 outcomes. However, the relationship between COVID-19 and androgenetic alopecia (AGA)-a condition strongly influenced by androgens-remains controversial in existing studies. Notably, there is a lack of large-scale clinical studies, particularly concerning data on the Chinese population following infection with the Omicron variant.
View Article and Find Full Text PDFFluorescence emission regulation is of great interest for its promising applications in various fields such as microscopy, chemical analysis, encryption, and sensing. Most studies focus on the regulation of the fluorescence emission process. However, the spectral separation of excitation and emission of fluorophores requires careful design of resonances to cover both emission and excitation wavelengths, which is a better choice to enhance fluorescence intensity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.
We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7 GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).
View Article and Find Full Text PDFFront Plant Sci
December 2024
LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.
Wheat is an essential staple food, and its production and grain quality are affected by extreme temperature events. These effects are even more relevant considering the increasing food demand for a growing world population and the predicted augmented frequency of heat waves. This study investigated the impact of simulated heat wave (HW) conditions imposed during grain filling on starch granule characteristics, endosperm ultrastructure, and transcriptomic modulation of genes involved in starch synthesis and degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!