Objectives: The aim of this study was to quantify and compare fat fraction (FF) and muscle volume between patients with failed and intact rotator cuff (RC) repair as well as a control group with nonsurgical conservative treatment to define FF cutoff values for predicting the outcome of RC repair.
Materials And Methods: Patients with full-thickness RC tears who received magnetic resonance imaging (MRI) before and after RC repair including a 2-point Dixon sequence were retrospectively screened. Patients with retear of 1 or more tendons diagnosed on MRI (Sugaya IV-V) were enrolled and matched to patients with intact RC repair (Sugaya I-II) and to a third group with conservatively treated RC tears. Two radiologists evaluated morphological features (Cofield, Patte, and Goutallier), as well as the integrity of the RC after repair (Sugaya). Fat fractions were calculated from the 2-point Dixon sequence, and the RC muscles were segmented semiautomatically to calculate FFs and volume for each muscle. Receiver operator characteristics curves were used to determine FF cutoff values that best predict RC retears.
Results: In total, 136 patients were enrolled, consisting of 3 groups: 41 patients had a failed RC repair (58 ± 7 years, 16 women), 50 patients matched into the intact RC repair group, and 45 patients were matched into the conservative treatment group. Receiver operator characteristics curves showed reliable preoperative FF cutoff values for predicting retears at 6.0% for the supraspinatus muscle (0.83 area under the curve [AUC]), 7.4% for the infraspinatus muscle (AUC 0.82), and 8.3% for the subscapularis muscle (0.94 AUC).
Conclusions: Preoperative quantitative FF calculated from 2-point Dixon MRI can be used to predict the risk of retear after arthroscopic RC repair with cutoff values between 6% and 8.3%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0000000000001024 | DOI Listing |
Muscle Nerve
December 2024
Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Introduction/aims: Primary hypokalemic periodic paralysis (HypoPP) can present with periodic paralysis and/or permanent muscle weakness. Permanent weakness is accompanied by fat replacement of the muscle. It is unknown whether the permanent muscle weakness is solely due to fat replacement or if other factors affect the ability of the remaining muscle fibers to contract.
View Article and Find Full Text PDFAm J Clin Nutr
December 2024
Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
Background: The American Academy of Pediatrics advises that the nutrition of preterm infants should target a body composition similar to that of a fetus in utero. Still, reference charts for intrauterine body composition are missing. Moreover, data on sexual differences in intrauterine body composition during pregnancy are limited.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Objectives: The aim of this study was to introduce the blackbird sign as a fast, qualitative measure of early supraspinatus (SSP) muscle atrophy and to correlate the sign with quantitatively assessed muscle volume and intramuscular fat fraction (FF) in patients with full-thickness SSP tears.
Materials And Methods: The blackbird sign describes the asymmetric pattern of early SSP atrophy: on sagittal MR images, the supero-posterior contour of the muscle becomes concave, resembling the shape of a blackbird. MRIs of patients with full-thickness SSP tears were retrospectively reviewed for the presence of the blackbird and tangent signs.
Invest Radiol
December 2024
From the Department of Radiology, Boston Children's Hospital, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.); and Harvard Medical School, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.).
Objectives: The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI.
View Article and Find Full Text PDFJSES Int
May 2024
Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.
Background: The pathology of and mechanisms underlying muscle degeneration remain unclear. We aimed to quantitatively evaluate the natural changes in fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears using 3-dimensional 2-point Dixon magnetic resonance imaging.
Methods: Thirty patients with nonoperatively observed rotator cuff tears without tear extension were evaluated using multiple magnetic resonance imaging examinations with a minimum interval of 2 years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!