Wetlands play an important role in conserving biodiversity, the hydrosphere's equilibrium, and the maintenance of daily livelihood; therefore, the trophic process hastens the succession procedure in them, resulting in structural changes in the landscape. The study aimed to monitor and investigate the impact of the trophic procedure on landscape structural changes in Anzali Wetland, specifically domains related to vegetation canopy and water bodies, over 24 years. The TSI (trophic state index) of the Anzali Wetland, a vital habitat in the south of the Caspian Sea, was estimated by using the Carlson TSI for 1994, 2002, 2014, and 2018. Based on satellite data for these years, the structural landscape changes were also measured using metrics such as the number of patches (NumP), class area (CA), mean patch size (MPS), and mean shape index (MSI) of the measured patch using in Patch Analyst. The Spearman rank correlation coefficient was then used to calculate the correlation between the two variables of trophic index modifications and landscape metrics. Results showed that the TSI of the wetland touched 59.51 in 1994 and then reached 65.10 in 2018. Its water body area, which was 5283.90 ha in 1994, decreased to 4183.92 ha in 2018, indicating the greatest decrease in the area from 2002 to 2018. In addition, the maximum area of vegetation canopy in 2018 was 11696.31 ha. The trophic exhibited a positive correlation of 0.8 with the area of the vegetation canopy and a positive correlation of 0.4 with the NumP of the vegetation canopy. It also had an inverse correlation of -0.4 with the area and NumP of the water body. Based on the study findings, changes in the trophic level of Anzali Wetland can be regarded as a direct factor influencing the vegetation canopy and water body.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11672-1DOI Listing

Publication Analysis

Top Keywords

vegetation canopy
20
anzali wetland
12
water body
12
landscape changes
8
landscape metrics
8
trophic state
8
structural changes
8
canopy water
8
area vegetation
8
positive correlation
8

Similar Publications

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

A comparative evaluation of rehabilitation approaches for ecological recovery in arid limestone mine sites.

J Environ Manage

January 2025

College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China. Electronic address:

Limestone mining in arid regions, particularly within fragile environments, leads to severe environmental pollution and ecological degradation. Developing a scientifically sound and effective ecological rehabilitation strategy is therefore critical. This study constructed a three-dimensional ecological rehabilitation model integrating soil amelioration and vegetation reconstruction.

View Article and Find Full Text PDF

Niche-related processes explain phylogenetic structure of acoustic bird communities in Mexico.

PeerJ

January 2025

Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

Acoustic communities are acoustically active species aggregations within a habitat, where vocal interactions between species can interfere their communication. The acoustic adaptation hypothesis (AAH) explains how the habitat favors the transmission of acoustic signals. To understand how bird acoustic communities are structured, we tested the effect of habitat structure on the phylogenetic structure, and on the phylogenetic and vocal diversity of acoustic communities in a semi-arid zone of Mexico.

View Article and Find Full Text PDF

Assessing Vegetation Canopy Growth Variations in Northeast China.

Plants (Basel)

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.

View Article and Find Full Text PDF

Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!