A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Use of ChatGPT to Assist in Diagnosing Glaucoma Based on Clinical Case Reports. | LitMetric

The Use of ChatGPT to Assist in Diagnosing Glaucoma Based on Clinical Case Reports.

Ophthalmol Ther

Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, 930 Madison Ave., Suite 471, Memphis, TN, 38163, USA.

Published: December 2023

Introduction: The purpose of this study was to evaluate the capabilities of large language models such as Chat Generative Pretrained Transformer (ChatGPT) to diagnose glaucoma based on specific clinical case descriptions with comparison to the performance of senior ophthalmology resident trainees.

Methods: We selected 11 cases with primary and secondary glaucoma from a publicly accessible online database of case reports. A total of four cases had primary glaucoma including open-angle, juvenile, normal-tension, and angle-closure glaucoma, while seven cases had secondary glaucoma including pseudo-exfoliation, pigment dispersion glaucoma, glaucomatocyclitic crisis, aphakic, neovascular, aqueous misdirection, and inflammatory glaucoma. We input the text of each case detail into ChatGPT and asked for provisional and differential diagnoses. We then presented the details of 11 cases to three senior ophthalmology residents and recorded their provisional and differential diagnoses. We finally evaluated the responses based on the correct diagnoses and evaluated agreements.

Results: The provisional diagnosis based on ChatGPT was correct in eight out of 11 (72.7%) cases and three ophthalmology residents were correct in six (54.5%), eight (72.7%), and eight (72.7%) cases, respectively. The agreement between ChatGPT and the first, second, and third ophthalmology residents were 9, 7, and 7, respectively.

Conclusions: The accuracy of ChatGPT in diagnosing patients with primary and secondary glaucoma, using specific case examples, was similar or better than senior ophthalmology residents. With further development, ChatGPT may have the potential to be used in clinical care settings, such as primary care offices, for triaging and in eye care clinical practices to provide objective and quick diagnoses of patients with glaucoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640454PMC
http://dx.doi.org/10.1007/s40123-023-00805-xDOI Listing

Publication Analysis

Top Keywords

ophthalmology residents
16
senior ophthalmology
12
secondary glaucoma
12
glaucoma
10
glaucoma based
8
clinical case
8
case reports
8
cases primary
8
primary secondary
8
glaucoma including
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!