We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials. We design a precompensating level of the aberration with a slow-drift mirror, fast-steer mirror, one-dimensional adjustable slab-aberration compensator, and beam-shaping system to reduce these orders of wavefront aberration with low spatial resolution and large stroke. As the controlling bandwidth of different devices is diverse, the coupling oscillation between the precompensating level and adaptive optics (AO) level occurs, then we develop the multilevel synergically control to address the coupling. With the precompensating level, the experimental result shows the residual wavefront aberration of the slab laser is compensated well by the AO level effectively within the compensating capability. We clean up a 9.8 kW slab laser system with the beam quality of far-field focus spots improved from 17.71 to 2.24 times the diffraction limit.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.488395DOI Listing

Publication Analysis

Top Keywords

slab laser
16
multilevel synergically
12
wavefront correction
12
laser system
12
wavefront aberration
12
precompensating level
12
synergically controlling
8
controlling wavefront
8
wavefront
7
slab
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!